철도차량기술기준
(KRTS-VE-Part54-2018(R1))

Part 54

도시철도차량(모노레일경전철) 기술기준
목차 (Contents)

1. 개 요 ...1
 1.1 목적 ..1
 1.2 적응범위 ..1
 1.2.1 기술적 범위 ...1
 1.2.2 지리적 범위 ...1
 1.3 주요내용 ..1

2. 적합성 평가 ..2

3. 필수 요구사항 ..3
 3.1 일반사항 ...3
 3.2 안전 ..3
 3.2.1 차량한계 ..3
 3.2.1.1 차량한계 ..3
 3.2.1.2 차량중량 ..3
 3.2.1.3 중량분포 ..4
 3.2.1.4 차량구조 ..4
 3.2.1.5 차량표시 ..4
 3.2.2 주행안전 ...4
 3.2.2.1 전복방지 ..4
 3.2.2.2 충돌안전 ..4
 3.2.3 충돌안전 ..4
 3.2.3.1 충돌안전설계 ...4
 3.2.3.2 철도차량의 연결 ...5
 3.2.4 화재안전 ..5
 3.2.4.1 화재안전설계 ..5
 3.2.4.2 화재위험등급 ..5
 3.2.4.3 화재예방 ..6
 3.2.4.4 화재전파 방지 ..10
 3.2.4.5 화재의 감지 및 경보 ..11
 3.2.4.6 화재발생시 대피 ...11
 3.2.4.7 화재 진압설비 ..12
 3.2.4.8 화재안전설비의 작동상태 표시 ..13
 3.2.5 전기안전 ..13
 3.2.5.1 전기안전설계 ..13
 3.2.5.2 절연거리 확보 ...13
 3.2.5.3 전기차단 ...13
 3.2.5.4 전류관측 및 접지 ...13
 3.2.5.5 전자가용도장비의 역제 ...14
 3.2.5.6 오조작방지 ...14
<table>
<thead>
<tr>
<th>3.2.5.7</th>
<th>배선 및 전기기기의 배치</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.6</td>
<td>위험도분석</td>
<td>15</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>적용범위</td>
<td>15</td>
</tr>
<tr>
<td>3.2.6.2</td>
<td>위험도분석 절차</td>
<td>15</td>
</tr>
<tr>
<td>3.2.6.3</td>
<td>위험도분석 방법</td>
<td>15</td>
</tr>
<tr>
<td>3.2.6.4</td>
<td>위험도분석 결과기록</td>
<td>18</td>
</tr>
<tr>
<td>3.2.7</td>
<td>철도소프트웨어</td>
<td>19</td>
</tr>
<tr>
<td>3.2.7.1</td>
<td>소프트웨어 안전</td>
<td>19</td>
</tr>
<tr>
<td>3.2.7.2</td>
<td>계획수립</td>
<td>19</td>
</tr>
<tr>
<td>3.2.7.3</td>
<td>요구사항 정의</td>
<td>20</td>
</tr>
<tr>
<td>3.2.7.4</td>
<td>소프트웨어 설계</td>
<td>20</td>
</tr>
<tr>
<td>3.2.7.5</td>
<td>소프트웨어 구현</td>
<td>20</td>
</tr>
<tr>
<td>3.2.7.6</td>
<td>소프트웨어 시험</td>
<td>21</td>
</tr>
<tr>
<td>3.2.7.7</td>
<td>소프트웨어 설치</td>
<td>21</td>
</tr>
<tr>
<td>3.2.7.8</td>
<td>소프트웨어 유지보수</td>
<td>21</td>
</tr>
<tr>
<td>3.2.7.9</td>
<td>철도소프트웨어 기술기준 시행</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>성능</td>
<td>21</td>
</tr>
<tr>
<td>3.3.1</td>
<td>운행조건</td>
<td>21</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>기후조건</td>
<td>22</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>하중조건</td>
<td>22</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>운전조건</td>
<td>22</td>
</tr>
<tr>
<td>3.3.2</td>
<td>운행성능</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>인터페이스</td>
<td>22</td>
</tr>
<tr>
<td>3.4.1</td>
<td>차량-전력</td>
<td>22</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>전압 및 주파수 범위</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>회생제동</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.3</td>
<td>접전장치 접속점 접촉력</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.4</td>
<td>전차선과의 동적거동</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.5</td>
<td>접전장치 배열</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.6</td>
<td>접연구간 주행</td>
<td>23</td>
</tr>
<tr>
<td>3.4.1.7</td>
<td>접전장치 절연</td>
<td>24</td>
</tr>
<tr>
<td>3.4.2</td>
<td>차량-신호</td>
<td>24</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>지상신호장치와 인터페이스</td>
<td>24</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>차량신호장치와 인터페이스</td>
<td>24</td>
</tr>
<tr>
<td>3.4.3</td>
<td>차량-통신</td>
<td>25</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>승객정보</td>
<td>25</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>차내방송장치</td>
<td>25</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>통신장치</td>
<td>26</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>승객정보</td>
<td>26</td>
</tr>
<tr>
<td>3.4.3.5</td>
<td>열차운행정보 저장장치</td>
<td>27</td>
</tr>
<tr>
<td>3.4.4</td>
<td>차량-궤도</td>
<td>27</td>
</tr>
<tr>
<td>3.4.4.1</td>
<td>선로조건</td>
<td>27</td>
</tr>
</tbody>
</table>
3.4.4.2 캔트 부족 ... 27
3.4.4.3 궤도에 가해지는 하중 ... 27
3.4.4.4 선로의 유지보수 한계값 ... 27
3.4.5 차량-기관사 .. 28
3.4.5.1 운전제어대 ... 28
3.4.5.2 운전석 .. 28
3.4.5.3 운전실 조명 ... 29
3.4.5.4 기관사 시야확보 ... 29
3.4.5.5 디스플레이 장치와 스크린 ... 29
3.4.5.6 제어장치와 표시장치 ... 29
3.4.5.7 기관사 감시 ... 29
3.4.5.8 운전실 표시 ... 30
3.4.5.9 운전실 차량 도구와 휴대용 장비 .. 30
3.4.5.10 운전실 환경 ... 30
3.5 운영 및 유지관리 .. 30
3.5.1 유지보수 기준 ... 30
3.5.2 유지보수를 위한 자료 ... 31
3.5.2.1 일반 자료 .. 31
3.5.2.2 유지보수 관련 자료 ... 31
3.5.2.3 운행 관련 자료 ... 31
3.5.2.4 리프팅 도해 및 지침 ... 31
3.5.2.5 구조 관련자료 ... 31
3.6 운용한계 .. 32
3.6.1 안전운행 .. 32
3.6.2 보건 ... 32
3.6.3 소음 ... 32
3.6.3.1 평가범위 .. 32
3.6.3.2 평가조건 .. 33
3.6.3.3 평가기준 .. 34
3.6.3.4 평가방법 .. 34
3.6.4 구원운전 .. 34
3.6.5 공기역학적 특성 .. 34
3.6.5.1 선로주변 및 승강장에서의 허용 대기속도 ... 34
3.6.5.2 선로주변에서의 최대 압력변화 .. 35
3.6.5.3 횡풍 .. 35

4. 주요장치별 기준 .. 36
4.1 일반사항 ... 36
4.2 차체 및 설비 .. 37
4.2.1 구조체 설계 .. 37
4.2.2 구조체 안전 .. 37
4.2.3 설내설비 .. 38
| 4.2.4 리프팅 | 38 |
| 4.2.5 장애물 제거기 | 38 |
| 4.2.6 부식억제 | 38 |
| 4.2.7 출입문 | 38 |
| 4.2.8 출입문-스크린도어 연계 | 39 |
| 4.2.9 차량간 통로문 | 39 |
| 4.2.10 냉난방환기장치 | 40 |
| 4.2.11 등구류 | 40 |
| 4.2.12 의자 및 선반 | 41 |
| 4.2.13 전면유리창 | 41 |
| 4.2.14 측면유리창 및 기타 유리창 | 41 |
| 4.2.15 운전실 및 비상탈출구 | 42 |
| 4.2.16 승객용 비상 출구 | 42 |
| 4.2.17 경적 | 42 |
| 4.2.18 열차비상용품 | 43 |
| 4.3 주행장치 | 43 |
| 4.3.1 주행장치 설계 | 43 |
| 4.3.2 주행장치들 | 43 |
| 4.3.3 차축 및 주행륜 | 44 |
| 4.3.4 차축조립장치 | 44 |
| 4.3.5 현가장치 | 44 |
| 4.3.6 차체지지장치 | 44 |
| 4.3.7 구동장치 | 45 |
| 4.4 제동장치 | 45 |
| 4.4.1 제동장치 설계 | 45 |
| 4.4.2 제동 요구사항 | 46 |
| 4.4.3 비상제동 | 47 |
| 4.4.4 상용제동 | 47 |
| 4.4.5 주차제동 | 47 |
| 4.4.6 기초제동 | 48 |
| 4.4.7 압축공기 공급장치 | 48 |
| 4.4.8 환주방지 | 48 |
| 4.5 추진장치 | 49 |
| 4.5.1 설계 요구사항 | 49 |
| 4.5.2 인버터/컨버터 | 49 |
| 4.5.3 견인전동기 | 49 |
| 4.5.4 보호기능 | 50 |
| 4.5.5 집전장치 | 50 |
| 4.5.6 비상전전 | 50 |
| 4.5.7 피뢰기 | 50 |
| 4.5.8 주류즈 | 51 |
| 4.5.9 차단기 | 51 |
5. 시험규격서 60

5.1 부품시험 60
 5.1.1 내장판 화재시험 60
 5.1.2 의자 화재시험 63
 5.1.3 통로연결막 화재시험 67
 5.1.4 바닥재 화재시험 70
 5.1.5 단열재 화재시험 73
 5.1.6 전선 화재시험 77
 5.1.7 차체의장 화재시험 80
 5.1.8 내화성능시험 83
 5.1.9 전자제어기기시험 85
 5.1.10 유리창 시험 87
 5.1.11 의자강도시험 90

5.2 구성품시험 92
 5.2.1 구조체 하중시험 92
 5.2.2 대차시험 94
5.2.2.1	완성대차검사	94
5.2.2.2	대차하중시험	95
5.2.3	차체지지장치시험	97
5.2.4	접전장치시험	98
5.2.5	추진제어장치시험	100
5.2.5.1	주전력변환장치	100
5.2.5.2	견인전동기	108
5.2.5.3	조합시험	114
5.2.6	보조전원장치시험	118
5.2.7	차상신호장치시험	126
5.2.8	종합제어장치시험	127
5.2.9	제동장치시험	128
5.2.10	냉난방·환기장치시험	131
5.2.11	출입문시험	133
5.2.12	충돌안전시험	135
5.3	완성차시험	137
5.3.1	중량측정시험	137
5.3.2	차량한계측정	139
5.3.3	곡선통과시험	141
5.3.4	접지시험	143
5.3.5	절연저항시험	145
5.3.6	내전압시험	146
5.3.7	누수시험	148
5.3.8	차체리프팅시험	149
5.3.9	접전장치시험	150
5.3.10	추진제어장치시험	155
5.3.11	보조전원장치시험	156
5.3.12	차상신호장치시험	158
5.3.13	종합제어장치시험	160
5.3.14	제동시험	168
5.3.15	냉난방·환기장치시험	171
5.3.16	기능 및 동작시험	173
5.3.17	지상설비연계동작시험	179
5.3.18	중련문건시험	181
5.3.19	화재감지장치시험	182
5.4	시운전시험	183
5.4.1	역행시험	183
5.4.2	제동시험	186
5.4.3	최고속도시험	190
5.4.4	접전시험	191
5.4.5	유도장애시험	194
5.4.6	보호장치동작확인시험	195
5.4.7 소음시험 ...197
5.4.8 진동시험 ...203
5.4.9 승차감 시험 ...205
5.4.10 주행저항시험 ...208
5.4.11 공력특성시험 ...209
5.4.12 냉난방환기시험 ..211
5.4.13 지상설비 연계동작시험 ...213
5.4.14 주요기기온도 및 상태시험 ...215
5.4.15 중련운전시험 ...217
별표 1] 도시철도차량(모노레일경전철)의 적합성평가 .. 219
별표 2] 기술기준 세부항목과 필수요구사항의 관계 .. 223
별표 3] 도시철도차량(모노레일경전철)의 총중량 세부기준 228
별표 4] 도시철도차량(모노레일경전철)의 제원선정 세부기준 229
별표 5] 도시철도차량(모노레일경전철)의 총력 전복방지 세부기준 231
별표 6] 도시철도차량(모노레일경전철) 충돌안전도 평가방법 233
별표 6-2] 도시철도차량(모노레일경전철)의 열차내 비상통신장치 설치 세부기준 234
별표 7] 도시철도차량(모노레일경전철)의 구조체 세부기준 235
별표 8] 도시철도차량(모노레일경전철)의 구조체 전복강도 세부기준 235
별표 9] 승객용 출입문 강도 세부기준 ... 238
별표 9-2] 승객용 출입문의 비상개방장치 설치 세부기준 239
별표 10] 객실의자 안전 세부기준 ... 240
별표 11] 유리창 안전 세부기준 ... 241
별표 12] 열차비상용품 세부기준 ... 243
별표 13] 도시철도차량(모노레일경전철)의 차체지지장치 세부기준 244
별표 14] 부품시험의 대상항목 ... 245
별표 15] 구성품시험의 대상항목 ... 247
별표 16] 완성차시험의 대상항목 ... 250
별표 17] 시운전시험의 대상항목 ... 253
1. 개요

1.1 목적
1) 본 도시철도차량(모노레일경전철) 기술기준은 철도안전법(이하 "법"이라 한다) 제26조제3항에 따른 도시철도차량(모노레일경전철) 형식승인, 법 제26조의6제1항에 따른 도시철도차량(모노레일경전철) 완성검사, 법 제31조제1항 및 제32조제1항에 따른 형식승인 사후관리에 필요한 기준을 규정함을 목적으로 한다.
2) 국내에서의 철도운영을 위해 도시철도차량(모노레일경전철)의 형식승인 또는 완성검사를 신청하는 자(이하 "신청자"라 한다)는 해당 차량이 본 기술기준에서 정하는 사항에 적합하게 설계되었음을 입증하여야 한다.
3) 본 도시철도차량(모노레일경전철) 기술기준에서 정하지 않는 사항에 대해서는 차량을 구매하는 발주자(이하 "발주자"라 한다)와 제작자가 별도로 정할 수 있으며, 신청자가 별도로 요구하지 않는 한 형식승인, 제작자승인, 완성검사에는 적용되지 않는다.

1.2 적용범위

1.2.1 기술적 범위
1) 본 기술기준은 도시철도차량기술기준의 총칙(Part 1) [별표 1]에서 정의된 도시철도차량(모노레일경전철) 형식승인, 지속적인 운송을 위한 차량을 운용할 수 있는 차량을 운용할 수 있는 차량에 적용된다.
2) 도시교통권역에서 운영하는 도시철도차량(모노레일경전철)에 적용된다.
3) 도시철도차량의 부속시스템(부품 또는 구성품 등)에 관한 추가적 절차는 제2장에 제시되어 있다. 다만, 본 기술기준을 적용할 수 있는 도시철도차량의 경우, 국토교통부장관이 고시한 도시철도차량형식승인사후관리에 관한 규정에 따르지 않는 부분이 있는 경우에는 국토교통부장관의 사전의고와 해석에 의하여 적용한다.

1.2.2 지리적 범위
본 기술기준의 지리적 범위는 법 제26조제1항의 규정에 따라 대한민국 내에서 운용되는 도시철도차량(모노레일경전철)에 적용된다.

1.3 주요내용
본 기술기준은 다음과 같은 내용을 포함하고 있다.
1) 본 기술기준의 기술적 및 지리적 범위를 기술한다. (제1장)
2) 본 기술기준을 이용한 적합성평가를 기술한다. (제2장)
3) 도시철도차량(모노레일경전철)의 안전, 성능, 인터페이스, 운영 및 유지관리, 운용환경 등의 요구사항을 기술한다. (제3장)
4) 도시철도차량(모노레일경전철)의 차체 및 설비, 주행장치, 제동장치, 추진장치, 보조전원장치, 차량신호장치, 통합제어장치, 연결장치 등 주요장치별 설계 및 구조에 대한 요구사항을 기술한다. (제4장)
5) 도시철도차량(모노레일경전철)의 부품, 구성품, 완성차에 대한 설계적합성을 시험으로 입증할 경우 사용되는 시험규격을 기술한다. (제5장)
2. 적합성 평가

1) 철도안전법 시행규칙(이하 "규칙"이라 한다) 제46조제2항의 규정에 따라 도시철도차량(모노레일 경전철)에 대해 형식승인(설계적합성검사, 합치성검사, 차량형식시험) 및 완성검사단계에서 평가되는 항목은 [별표 1]을 참고할 수 있다.

2) 1)항의 규정에도 불구하고, [별표 1]의 평가항목은 도시철도차량(모노레일경전철)의 상이한 설계, 개발, 생산 특성에 따라 조정되어 시행될 수 있다. 특히, 각각의 설계적합성 입증방법은 신청자가 선택적으로 적용할 수 있다.

3) 철도안전법의 부칙(이하 "부칙"이라 한다) 제6조제1항의 규정에 따라 총전의 성능시험 및 제작검사가 진행 중이거나 합격하여 형식승인 및 완성검사를 받은 것으로 인정받은 철도차량을 법 시행(2014년 3월 19일) 이후에 새로이 제작하여 완성검사를 받는 경우에는 [별표 1]의 평가항목에 발주자 설계승인, 성능시험, 제작검사에서 수행되었던 항목이 추가될 수 있다.
3. 필수 요구사항

3.1 일반사항
1) 제3장에서는 도시철도차량(모노레일경전철)의 설계에 대한 필수 요구사항을 다음과 같이 기술한다.
 (1) 3.2의 차량한계, 주행안전, 충돌안전, 화재안전, 전기안전, 위험도분석, 철도소프트웨어 등 안전요구사항 관련 조항들
 (2) 3.3의 운행조건, 운행성능 등 성능 요구사항 관련 조항들
 (3) 3.4의 차량-전력계통, 차량-신호제어, 차량-통신, 차량-궤도, 차량-기관사 등 인터페이스 관련 조항들
 (4) 3.5의 운영 및 유지관리 요구사항 관련 조항들
 (5) 3.6의 안전운행, 보건, 소음, 구원운전 등 운용환경 요구사항 조항들
2) 본 기술기준의 제3장에서 기술된 핵심적인 필수 요구사항과 제4장에서 기술된 주요장치별 기준들은 다음의 핵심사항들을 기반으로 한다.
 (1) 안전
 (2) 최소성능
 (3) 인터페이스
 (4) 운용 및 유지관리
 (5) 신뢰성 및 기능성
 (6) 보건
 (7) 환경 보호
 (8) 기술적 호환성
3) 2)항의 핵심사항과 제3장의 필수요구사항 및 제4장의 장치별 기준들의 관계는 [별표 2]와 같다.

3.2 안전

3.2.1 차량한계

3.2.1.1 차량한계
1) 차량한계는 해당 도시철도차량(모노레일경전철)의 설계 및 제작의 적합성, 궤도시설에 대한 안전성, 차체와 차체 그리고 차체와 대차 사이의 간섭이 발생하지 않음을 보장해야 한다.
2) 차량과 선로구조물과의 간섭유무 확인 시에는 철도차량의 동적거동을 고려하여야 한다.(최소곡선반경, 차량의 최대 변위, 최대 캐노데 채도, 하중 및 속도조건, 틸팅각, 타이어의 마모 및 파손 등을 고려한다)
3) 하중 고려시 각종 승객에 의한 부가 하중을 고려한다.
4) 해당 철도차량은 모든 경우의 동적거동이 건축하게 내에 있도록 설계되어야 하며, IEC 62486, EN 15273-1, EN 15273-2, EN 15273-3, UIC 505-1 등을 참고할 수 있다.
5) 신청자는 정직한계의 경우 차량한계 측정시험으로 입증하고, 동적한계의 경우 계산서(또는 해석서)를 이용하여 입증한다.

3.2.1.2 차량중량
1) 철도차량의 총중량은 정상적인 운전이 가능한 상태의 철도차량 자체만의 중량(공차중량, W0)과
기관사 · 승객 · 승무원 및 부가하중(최대용량 기준) 등을 합한 중량(만차중량, W2)으로 한다.
2) 정차상태에서 도시철도차량(모노레일경전철)의 축중과 총중량은 [별표 3]을 참고할 수 있다. 다만 신청자가 해당 도시철도차량(모노레일경전철)에 대해 별도의 기준을 제시하고, 차량 발주자가 동의하는 경우 철도차량형식승인 · 제작자승인 · 완성검사시험지침(이하 “지침”이라 한다) 제2조제1호에 따른 검사기관(이하 “검사기관”이라 한다) 또는 지침 제2조제2호에 따른 전문기관(이하 “전문기관”이라 한다)은 이를 바탕으로 형식승인검사 또는 완성검사를 수행한다.
3) 공차상태에서 각 축중은 그 동일차량의 축중평균치와의 편차가 5% 이내이어야 한다. 다만, 관절 형식의 주행장치 또는 탈선방지 구조로 된 도시철도차량(모노레일경전철)의 경우에는 그러하지 아니하다.

3.2.1.3 중량분포
1) 공차중량 상태에서 각 차축의 한쪽 차륜하중은 동일차축의 좌우측차륜하중 평균치와의 편차가 5% 이내이어야 한다.
2) 공차중량 상태에서 한쪽 선로의 차륜의 하중합은 그 동일철도차량의 좌우측선로 차륜의 하중합의 평균치와의 편차가 5% 이내이어야 한다.

3.2.1.4 차량구조
도시철도차량(모노레일경전철)의 구조와 관련된 제원산정은 [별표 4] 등을 참고할 수 있다.

3.2.1.5 차량표시
1) 철도차량에는 다음 각 호의 사항이 표기되어야 한다.
 (1) 차량종류
 (2) 형식승인번호
 (3) 제작자승인번호
 (4) 완성검사 일련번호
 (5) 차량제작자
 (6) 제작연월
2) 제1항에의 차량표시는 신청자와 발주자의 협의에 따르며, KS R 9113을 참고할 수 있다.

3.2.2 주행안전
3.2.2.1 전복방지
1) 철도차량은 설정된 최대 캔트의 곡선구간을 규정된 속도로 운행하는 경우 전복하지 아니하고 통과할 수 있는 구조와 장치를 갖추어야 한다.
2) 철도차량의 전복방지는 [별표 5], EN 14067-1, EN 14067-6 등을 참고할 수 있다.

3.2.3 충돌안전
3.2.3.1 충돌안전설계
1) 철도차량은 충돌사고에 대비하여 다음 각 호의 기준에 적합하게 설계되어야 한다.
 (1) 충돌사고가 발생한 경우 기관사 및 승객이 위치하는 부분의 변형 및 철도차량간 올라타는 현상, 충돌 후 탈선 등을 최소화하도록 할 것
철도차량기술기준 KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(2) 충돌사고가 발생한 경우 철도차량의 차체구조물 등이 승객 등이 위치한 장소에 침입하는 것을 최소화하도록 할 것
(3) 도시철도차량(모노레일경전철)은 충돌 시 발생하는 충돌에너지로 철도차량별로 충분히 분산 흡수하여 승객 및 승무원의 상해를 최소화하도록 할 것
(4) 연결기의 허용하중을 초과하는 충돌사고가 발생한 경우 승객 및 승무원의 피해를 최소화할 수 있도록 차체부위에 구조적으로 약한 부위를 설계하거나 추가적인 에너지흡수장치를 장착하여 충돌에너지를 흡수도록 할 것
2) 철도차량제작자는 도시철도차량(모노레일경전철)이 정해진 표준충돌사고각본에 의하여 제1항의 규정에 의한 기준을 만족하는지의 여부를 확인하여야 한다.
3) 제2항에 따른 표준충돌사고각본 및 충돌안전도 평가방법은 [별표 6]을 참고할 수 있다.

3.2.3.2 철도차량의 연결
공차중량 상태의 철도차량은 5km/h의 속도에서 제동이 되어 있는 동일한 형식의 철도차량과 연결기를 통하여 충돌한 경우 차체 및 연결기 등에 손상이 발생하지 아니하여야 한다.
다만, 차량발주자가 유사한 철도차량에도 동일한 요구사항을 요구하는 경우에는 이를 만족하여야 한다.

3.2.4 화재안전

3.2.4.1 화재안전설계
1) 철도차량은 화재 발생 위험의 최소화, 화재의 전파방지, 터널 등 접근이 어려운 장소에서의 화재 위험성 등을 고려하여 설계되어야 한다.
2) 도시철도차량(모노레일경전철)에 화재가 발생한 경우 탑승자가 화재, 열, 연기 및 독성가스 등의 영향으로부터 보호받으며 안전하게 탈출할 수 있도록 설계되어야 한다.
3) 도시철도차량(모노레일경전철)은 화재가 발생한 경우 탑승자를 대피시킬 수 있는 안전한 장소로 이동하는 동안 제동 및 관련 장치의 기능이 확보되어야 한다. 이때 화재로 인하여 발생한 장애로 인해 열차가 자동적으로 정지되지 않도록 설계되어야 한다.

3.2.4.2 화재위험등급
1) 도시철도차량(모노레일경전철)은 운행유형과 설계유형에 따라 위험등급을 분류한다.
2) 도시철도차량(모노레일경전철)의 운행유형 분류 기준은 [표 1]과 같다.

| [표 1] 도시철도차량(모노레일경전철)의 운행유형에 따른 분류 기준 |
|------------------------------|------------------------------|------------------------------|
| 운행유형 기호 | 승객의 대피 용이성 구분 | 도시철도차량(모노레일경전철)의 운행구간 특성 |
| [가] | 즉시 대피 가능 | 최장 길이가 1km 이하인 지하구간, 터널 및 고가지역 운행 |
| [나] | 단시간 이동 대피 가능 | 다음 안전지역까지의 거리가 5km 이하 또는 정상운행 속도로 4분 이내 이동 가능한 지역 운행 |
| [다] | 장시간 이동 대피 가능 | 다음 안전지역까지의 거리가 20km 이하 또는 정상운행 속도로 15분 이내 이동 가능한 지역 운행 |
| [라] | 대피 곤란 또는 상위의 분류유형에 속하지 않는 지역 또는 대피불가능 지역을 |
철도차량기술기준 KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

<table>
<thead>
<tr>
<th></th>
<th>물가능</th>
<th>운행</th>
</tr>
</thead>
<tbody>
<tr>
<td>주1) 안전지역이란 화재의 위험으로부터 벗어난 개활지 및 지상에 설치된 역사를 말한다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주2) 대피불가능 지역이란 대피할 수 있는 통로가 없는 200m 이상의 지하구간, 터널 또는 고가지역을 의미한다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주3) 철도차량이 운행 시 두 가지 이상의 운행유형에 속하는 경우에는 승객 대피가 어려운 운행유형에 따른다.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) 도시철도차량(모노레일경전철)의 설계유형 분류기준은 [표2]와 같다.
4) 도시철도차량(모노레일경전철)의 화재위험등급 분류기준은 [표3]과 같다.
5) 도시철도차량(모노레일경전철)의 운행유형, 설계유형 등은 발주자의 요구사항에 따른다.

[표 2] 도시철도차량(모노레일경전철)의 설계유형에 따른 분류 기준

<table>
<thead>
<tr>
<th>설계유형 기호</th>
<th>적 용 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>[B] 내지 [D]의 설계유형에 속하지 아니하는 철도차량</td>
</tr>
<tr>
<td>[B]</td>
<td>동력차·부수차(제어차 포함)</td>
</tr>
<tr>
<td>[C]</td>
<td>침대가 설치된 철도차량, 이층구조의 철도차량</td>
</tr>
<tr>
<td>[D]</td>
<td>무인운전의 철도차량</td>
</tr>
</tbody>
</table>

[표 3] 도시철도차량(모노레일경전철)의 화재위험등급 분류기준

<table>
<thead>
<tr>
<th>운행범위</th>
<th>설계범위</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[A]</td>
</tr>
</tbody>
</table>

3.2.4.3 화재예방
1) 도시철도차량(모노레일경전철)의 차체 및 실내설비는 다음 각 호의 어느 하나에 해당하는 불에 타지 아니하는 재료(이하 "불연재료"라 한다)를 사용하여야 한다.
(1) 철·구리·알루미늄·스테인리스 등 금속이나 유리 등 무기질 재료
(2) 국제표준화기구(International Organization for Standardization)에서 정한 시험방법 ISO 1182 또는 한국산업규격에서 정한 시험방법 KS F ISO 1182에 의하여 시험한 결과 시료의 연소에 의한 추가온도상승이 50℃ 이하인 재료
(3) 국제표준화기구에서 정한 시험방법 ISO 4589-2 또는 한국산업규격에서 정한 시험방법 KS M ISO 4589-2에 의하여 시험한 결과 산소지수(Limited Oxygen Index)가 70 이상인 재료
2) 도시철도차량(모노레일경전철)의 차체 외장재와 실내설비 중 내장판·의자·통로연결막·바닥재·단열재 및 전선은 불연재료 또는 [표4]의 합격기준을 만족하는 재료를 사용하여야 한다. 세부시험대상 품목은 [표5]와 같다.
표 4] 도시철도차량(모노레일경전철)의 외장재와 실내설비 화재안전 기준

<table>
<thead>
<tr>
<th>화재성능 요구기준</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>내장판</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @60kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5668-2</td>
<td>Qasb(MJ/m²)</td>
<td>≥1.2</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>CFE(kW/m²)</td>
<td>≥15</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤150</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤300</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @25kW/m²)</td>
<td>≤75</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤175</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤300</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @60kW/m²)</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤300</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.2</td>
</tr>
<tr>
<td></td>
<td>EN 45654-2 Annex B</td>
<td>MARHE</td>
<td>≤75</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @50kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>Qasb(MJ/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤7</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤400</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @25kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>MARHE(kW/m²)</td>
<td>≥4.5</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤400</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤5.0</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE(kW/m²)</td>
<td>≥4.5</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤400</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤5.0</td>
</tr>
<tr>
<td>부착</td>
<td>요구기준</td>
<td>시험방법</td>
<td>시험규격</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>면장</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m²/650kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-2</td>
<td>CFE(kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0 min)</td>
<td>≤350</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.0</td>
</tr>
<tr>
<td>외부</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m²/650kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-2</td>
<td>CFE(kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0 min)</td>
<td>≤400</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤4.0</td>
</tr>
<tr>
<td>바닥</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m²/650kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISO 5660-2</td>
<td>CFE(kW/m²)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0 min)</td>
<td>≤400</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤4.0</td>
</tr>
<tr>
<td>내부용</td>
<td>외경 12mm 이상, IEC 60332-3-24</td>
<td>수직화염전파 (연소거리: m)</td>
<td>≤2.5</td>
</tr>
<tr>
<td></td>
<td>외경 6mm이하, IEC 60332-3-25</td>
<td>수직화염전파 (연소거리: m)</td>
<td>≤2.5</td>
</tr>
<tr>
<td>전선</td>
<td>IEC 61034-2</td>
<td>연결밀도 (투과율: %)</td>
<td>≥25</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.1</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
</tr>
<tr>
<td>외부용</td>
<td>외경 12mm 이상, IEC 60332-3-24</td>
<td>수직화염전파 (연소거리: m)</td>
<td>≤2.5</td>
</tr>
<tr>
<td></td>
<td>외경 6mm이하, IEC 60332-3-25</td>
<td>수직화염전파 (연소거리: m)</td>
<td>≤2.5</td>
</tr>
<tr>
<td></td>
<td>IEC 61034-2</td>
<td>연결밀도 (투과율: %)</td>
<td>≥25</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.1</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
</tr>
</tbody>
</table>

주2) 전선의 경우 BS 6853 - Category 1a 또는 NF F 16 101 - Category 1a 기준을 만족하는 경우에도 사용할 수 있으며, 해당 국제표준규격과 부합하는 KS 규격을 적용할 수 있으며, 동등 이상의 해외규격 인증품도 사용할 수 있다. 내부와 외부를 관통하는 전선은 내부용 기준을 만족해야 한다.
주3) 외장재 및 실내설비의 화재성능 시험은 폐인트나 필름 및 코팅을 포함하여 실차와 동일한 조건으로 제작된 시편으로 수행한다. 차체가 불연재일 경우에는 [표4]의 차체 외장에 대한 화재성능 시험을 면제한다.
주4) 방염막으로 포장한 쿠션의 경우에는 방염막으로 포장된 형태로 제작된 시편에 대하여 ISO 5660-1 시험을 수행할 수 있다.

[표 5] 화재시험 대상 세부품목

<table>
<thead>
<tr>
<th>연번</th>
<th>품목</th>
<th>세부항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>내장판</td>
<td>실내 벽 및 천정판, 실내 덕트, 출입문, 창문들, 차량간 통로연결부 방염판</td>
</tr>
<tr>
<td>2</td>
<td>의자</td>
<td>커버, 쿠션, 몸체</td>
</tr>
<tr>
<td>3</td>
<td>통로연결막</td>
<td>(A형) 객실간 단부문이 없으며 객실측 통로막에 방염판도 없는 경우 (B형) 객실간 단부문이 있거나 또는 객실측 통로막에 방염판이 있는 경우</td>
</tr>
<tr>
<td>4</td>
<td>바닥재</td>
<td>바닥부 표면재</td>
</tr>
<tr>
<td>5</td>
<td>단열재</td>
<td>벽 및 천정부, 객실 덕트 내부, 외부 공조기 내부, 바닥 하부</td>
</tr>
<tr>
<td>6</td>
<td>전선</td>
<td>철도차량 내외부 전선</td>
</tr>
<tr>
<td>7</td>
<td>차체구조</td>
<td>차체의 지붕, 단부, 바닥 구조체</td>
</tr>
<tr>
<td>8</td>
<td>차체외장</td>
<td>차체의 외벽과 전두부 마스크</td>
</tr>
</tbody>
</table>

3) 도시철도차량(모노레일경전철)의 실내 · 외에 부착하는 액자형 광고틀 · 광고물 보호덮개 · 광고물지지대 등은 불연재료를 사용하여야 한다.
4) 기타 재료의 경우에도 불연재를 사용하는 것을 원칙으로 하되, 도시철도차량(모노레일경전철)의 실내설비의 성질상 불연재료를 사용할 수 없는 경우에는 시험방법 ISO 5660-1에 의한 시험결과 MARHE(@50kW/m²) 100 kW/m² 미만 또는 시험방법 ISO 4589-2 (KS M ISO 4589-2)에 의하여 시험한 결과 산소지수가 24 이상인 재료를 사용하거나, 기타 한국산업규격 또는 국제적으로 인정된 시험방법에 의한 연소성 시험에 의하여 검증된 재료를 사용할 수 있다. 또한, 1)항의 (1)호~(3)호에 해당하는 불연성 기준에 적합한 재료 혹은 1mm 이상의 불연재료로 완전하게 싸여진 심재를 사용할 수 있다.
5) 철도차량에 설치되는 단위 당 노출면적이 0.2 m² 미만이면서 단위미터 또는 단위제곱미터 당 사용량이 200그램 이하인 실내설비 중 다음 각 호의 어느 하나에 해당하는 경우에는 1)항, 3)항 및 4)항의 규정을 적용하지 않을 수 있다. 다만, [표 4]에서 규정하고 있는 실내설비는 제외한다.
 (1) 단위 당 무게가 10그램 미만이고 1)항에서 4)항까지의 규정을 적용하지 않는 10그램 미만의 다른 실내설비와 접촉하지 않는 실내설비
 (2) 단위 당 무게 또는 접촉하여 사용하는 실내설비의 총 무게가 100그램 이하이고 1)항에서 4)항까지의 규정을 적용하지 않는 다른 실내설비와의 수평거리 20mm 이상 또는 수직거리 200mm 이상인 실내설비
6) 차체에 사용되는 전선은 [표4]의 난연기준을 충족하여야 하며, 특수 목적으로 소량 사용되거나 차량부속장치 내부전선 및 특수전선(데이터버스 케이블(Data Bus Cable))의 경우 제외할 수 있다.
7) 불꽃 발생 및 발열의 위험이 있는 기기는 일정한 간격으로 분리되어 설치하고, 필요한 경우 그 사이가 절연되거나 불연재료로 된 차단막이 설치되어야 한다.
8) 차량에 연료탱크가 설치되는 경우 화재와 불꽃으로부터의 위험이 최소화되는 위치에 설치되고 보호되어야 한다. 인화성 액체를 담고 있는 탱크들은 다음의 특별 조치들을 따른다. 변압기 탱크 (transformer tank)의 경우도 인화성 액체들을 담고 있는 경우 이에 따른다.
 (1) 인화성 액체를 담은 탱크나 연결된 배관이 궤도로부터 튀어 오는 파편들에 의해 파손되지 않도록 설계 또는 보호되어야 한다. 탱크들은 다음과 같은 장소에 설치되어서는 안 된다.
 가. 충돌 에너지 흡수 지대
 나. 승객 착석 구역 및 승객들의 임시 사용 구역
 다. 점간
 라. 운전실
 (2) 다음의 요건들에 따라 구축된 탱크들은 최소한의 충격 성능을 충족하는 것으로 간주된다. 만약 다른 재질들이 사용된 경우, 동등한 수준의 안전대책이 수립되어야 한다. 인화성 액체용 탱크들의 벽은 [표6]과 같은 최소 두께를 가져야 한다.

[표 6] 인화성 액체 탱크벽의 최소 두께

<table>
<thead>
<tr>
<th>용적</th>
<th>강철 [mm]</th>
<th>알루미늄 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2000 L</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>> 2000 L</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

(3) 탱크 내의 인화성 액체의 온도는 모든 정상적 운행 조건 하에서 발화점 미만으로 유지되어야 한다.
(4) 인화성 액체용 탱크들은 가능한 액체의 충전이나 배출, 혹은 탱크나 배관으로부터의 누출이 발생하는 동안 다음과 같은 일이 발생하지 않도록 설계되어야 한다.
가. 분사로 이어질 수 있는 화재 기계와 접촉(예들 들어 통풍기나 냉각기 등과 같이 흡입을 하는 장비로 끌려감)
나. 전기 스파크를 발생시킬 수 있는 뜨거운 부속이나 전기 장비와 접촉하게 됨
다. 단열재나 흡음재 층으로 침투됨
라. 탱크용 안전밸브 관련 사항은 KS R 9242를 참고할 수 있다.
(5) 기타 연료 탱크에 대한 안전 요건
가. 공칭 연료 탱크 용적의 충전 한계 표시기가 구비되어 남침을 방지하여야 한다.
나. 인화성 액체가 정상적인 운전 조건 하에서 충전 파이프나 기타 개구부로부터 누출되지 않음이 보장되어야 한다.
다. 탱크차의 기타요건에 관한 사항은 KS R 9240을 참고할 수 있다.
(6) ISO 11014-1 등을 참고할 수 있다.

3.2.4.4 화재전파 방지
1) 각 철도차량은 화재가 다른 철도차량으로 전파되는 것을 방지하고 승객이 안전하게 탈출할 수 있도록 화재전파 차단성을 갖추어야 한다. 차량간 통로를 화재전파 차단성을 위한 구조로 활용할 수 있다.
2) 차량간 통로문이 없는 객실 연결 구조의 차량일 경우에도 열차가 승객피난을 위하여 안전지역으로 이동하는 동안 객실간 연기가 전파되지 않도록 제어되어야 한다. 다만, 즉시대피가 가능한 차량의 경우 이를 적용하지 아니할 수 있다.
3) 도시철도차량(모노레일경전철)은 화재가 전파 또는 확산되더라도 차체로서의 기계적 강도를 유지하여 다른 차체와 또는 열차에 위험을 미치지 아니하여야 한다. 차체구조는 [표7]의 내화성능을 만족하여야 한다.

<table>
<thead>
<tr>
<th>사항</th>
<th>본문</th>
</tr>
</thead>
<tbody>
<tr>
<td>2)</td>
<td>차량간 통로문이 없는 객실 연결 구조의 차량일 경우에도 열차가 승객피난을 위하여 안전지역으로 이동하는 동안 객실간 연기가 전파되지 않도록 제어되어야 한다. 다만, 즉시대피가 가능한 차량의 경우 이를 적용하지 아니할 수 있다.</td>
</tr>
<tr>
<td>3)</td>
<td>도시철도차량(모노레일경전철)은 화재가 전파 또는 확산되더라도 차체로서의 기계적 강도를 유지하여 다른 차체와 또는 열차에 위험을 미치지 아니하여야 한다. 차체구조는 [표7]의 내화성능을 만족하여야 한다.</td>
</tr>
</tbody>
</table>

표 7 도시철도차량(모노레일경전철)의 차체구조 내화성능 기준

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>바닥</td>
<td>KS F 2257-5 또는 ISO 834-5</td>
<td>내화성능 유지시간 (분)</td>
<td>≥15</td>
<td>≥15</td>
<td>≥20</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td>단부, 지붕</td>
<td>KS F 2257-1 또는 ISO 834-1</td>
<td>차체유성 유지시간 (분)</td>
<td>≥15</td>
<td>≥15</td>
<td>≥20</td>
<td>≥20</td>
<td></td>
</tr>
</tbody>
</table>

주1) 차체가 불연재일 경우에는 [표7]의 차체구조 내화성능 시험을 면할 수 있다.
주2) 600V 이하의 동력 공급 전압을 사용하거나 지붕구조를 통하지 않는 급전 구조를 사용하는 경우는 지붕 구조의 차염성능시험을 면한다. 단부 및 지붕 구조체에 대한 차염성능 유지시간 시험은 차체의 최외부 구조체에 대하여 수행하며, 부위에 따라 구조체의 두께가 다른 경우는 총면적 5m² 이상의 면적을 차지하는 가장 얇은 두께를 기준으로 수행한다.

4) 공기조화장치 및 화기장치는 화재 또는 연기 등이 감지된 때 승객을 보호하고 화재의 전파를 방지하기 위하여 기관사 또는 승무원이 그 기능을 제어할 수 있어야 한다.
5) 그 밖에 UIC 641, EN 45545-4 등을 참고할 수 있다.
1) 도시철도차량(모노레일경전철)은 화재가 발생한 경우에 승객이 신속하고 안전하게 탈출할 수 있도록 충분한 대피설비와 구조를 갖추어야 한다.
2) 객실 출입문을 포함하여 비상탈출에 사용될 수 있는 모든 탈출구는 폭 700mm, 높이 550mm 이상의 크기를 확보하여야 하며 전체 차량에서 16m 이내에 도달할 수 있도록 하는 것을 원칙으로 한다.
3) 도시철도차량(모노레일경전철)에는 화재가 발생한 경우에 역 외의 장소에서 출입문 또는 비상탈출구를 통하여 여객이 용이하게 대피할 수 있도록 비상망치 또는 비상탈출 및 하차설비 등이 설치되어야 한다. 비상탈출구의 하단과 선로상단의 거리가 1.8m를 초과하는 경우 승객의 안전한 탈출을 보장할 수 있는 하차설비를 마련하여야 한다. 다만 대피로가 전 구간에 설치된 경우에는 그러지 아니하다.
4) 도시철도차량(모노레일경전철)의 출입문은 비상시에 승무원 또는 승객이 수동으로 열 수 있는 구조이어야 한다.
5) 도시철도차량(모노레일경전철)에는 축전지 전원으로 작동되는 다음의 장치를 갖추어야 한다.
 (1) 승객과 승무원간의 통신장치(무인운전 차량의 경우 승객과 관제실간 통신장치)
 (2) 화재상황을 알릴 수 있는 방송장치 또는 경보장치
 (3) 비상등
 (4) 환기장치의 비상단힘장치
6) 운전실이나 인접한 차량 내부에 비상시 승무원이 사용할 수 있는 비상용품을 비치한다. 주요 비상용품은 아래와 같다.
 (1) 공기호흡기
 (2) 들것
 (3) 확정기
 (4) 방독면
 (5) 기타 차량특성상 필요한 비상용품은 [별표 12]에 따른다.

3.2.4.7 화재 진압설비
1) 철도차량에는 [표8]의 기준에 따라 소화기가 비치되어야 한다.

[표 8] 도시철도차량(모노레일경전철) 소화기 비치 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>차종</th>
<th>규격</th>
<th>수량</th>
<th>설치장소</th>
</tr>
</thead>
<tbody>
<tr>
<td>도시철도차량 (모노레일경전철)</td>
<td>운전실</td>
<td>일반화재 능력단위 40이상, 유류화재능력단위 5이상, 전기화재 적용가능</td>
<td>1</td>
<td>운전실</td>
</tr>
<tr>
<td>객실</td>
<td></td>
<td></td>
<td>2</td>
<td>객실 양단부 외</td>
</tr>
</tbody>
</table>

주1) 특수차의 소화기 설치기준은 특수차의 구조 및 장치를 고려하여 위의 기준 중 적합한 기준을 준수한다. 객실부는 객실과 서비스룸(Service Room)을 포함한다.
주2) 별도의 운전실이 없는 경량전철의 경우에는 객실기준의 수량만 적용할 수 있다.

2) 소화기는 「화재예방, 소방시설 설치 · 유지 및 안전관리에 관한 법률」에 따라 소방청장이 정하여 고시한 기준에 적합한 것으로 하며 아래 사항을 충족하여야 한다.
 (1) 일반화재 · 유류화재 및 전기화재 모두를 진압할 수 있을 것
(2) 소화기의 사용적정압력은 20℃에서 784.8kPa (또는 8kgf/cm²)이상 981.0kPa (또는 10kgf/cm²) 이하일 것
(3) 방사거리의 3m 이상일 것
3) 소화기는 승무원 또는 승객이 용이하게 접근하여 사용할 수 있는 위치에 비치되어야 하며, 소화기와의 보관함은 소화기를 쉽게 사용할 수 있도록 덮개가 없는 개방형으로 설치하여야 한다.
4) 소화기 인근에는 「화재예방, 소방시설 설치 및 안전관리에 관한 법률」에 의하여 고시하는 화재안전기준에 적합한 축광위치표지(이하 "축광위치표지"라고 한다)로 소화기의 위치와 화재발생시 사용방법 등을 표시한 표지를 부착하여야 한다.
5) 예비위험도분석 및 상세위험도분석 결과 필요하다고 인정되는 도시철도차량(모노레일경전철)에는 자동으로 화재를 진압하고 이를 운전실에서도 작동시킬 수 있는 자동화재진압설비가 설치되어야 한다.

3.2.4.8 화재안전설비의 작동상태 표시
1) 기관사가 탑승하는 차량에는 화재감지·경보장치 또는 자동화재진압설비가 오작동하거나 작동되지 아니하는 경우에 그 사실을 시각방식 또는 음성방식으로 나타낼 수 있는 장치를 설치하여야 한다.
2) 시각방식으로 오작동 등의 상태를 나타내는 장치는 기관사가 착석한 위치에서 볼 수 있어야 한다.

3.2.5 전기안전
3.2.5.1 전기안전설계
1) 전기배선 및 전기장치는 인체에 대한 감전과 화재발생 위험을 방지할 수 있도록 설치되어야 한다.
2) 철도차량 내에 설치되는 전기장치 및 전기기구는 그 설치된 위치의 환경 및 사용전압을 고려하여 충전부상호간 또는 충전분부간 접지된 부분간 절연면에서 적합한 이격거리와 접지면거리를 확보하여야 한다.
3) 고전압 전기장치에는 사람이 보기 쉬운 위치에 KS S ISO 7010 등을 참고하여 고전압 표시 및 위험표시를 하여야 하며, 고전압 전기장치 간 전기배선이 철도차량 내부 및 외부에 노출되는 부분에는 필요시 금속이나 플라스틱 재질의 덮개 등 보호기구를 설치하여야 한다.

3.2.5.2 절연거리 확보
1) 철도차량에 설치된 전기장치 및 전기기구는 그 설치된 위치의 환경 및 사용전압을 고려하여 충전부상호간 또는 충전분부간 접지된 부분간 절연면에서 적합한 이격거리와 접지면거리를 확보하여야 한다.
2) 철도차량의 절연은 KS C IEC 60077-1 또는 동등이상의 기준을 고려하여 설계되어야 한다.

3.2.5.3 전기차단
1) 철도차량에는 운전 및 유지보수시 안전을 확보하기 위하여 전원을 차단하거나 분리시킬 수 있는 장치를 갖추어야 한다.
2) 제1항의 규정에 의한 장치에는 오조작에 의한 위험을 최소화하기 위한 주의표시가 있어야 하고, 임시로 기능을 갖추어야 한다.
3) 전기장치는 내부회로 또는 외부회로의 합산 및 다른 전기장치의 고장 등이 발생한 경우에 대비하여 회로차단기능 또는 회로보호기능 등을 갖추어야 한다.
4) 회로차단 또는 분리를 위하여 동작되는 장치는 그 동작상태를 알 수 있는 지시 또는 경보기능을
갖추어야 한다.
5) 주 회로 차단기의 설치위치는 차내 고압 회로들을 보호할 수 있어야 하고 접전장치, 주 회로 차단기, 그리고 이들 간의 고압 연결부는 사람에 적절히 배치되어야 한다.

3.2.5.4 전류귀환 및 접지
1) 차체와는 접연된 접지 기구에 모든 회로가 개별적으로 접속되고 노출된 도체를 통하여 접지 장치 (차체브라쉬 또는 전류복귀 슈)에 접속되거나 또는 접지 장치에 접속된 차체에 모든 전력 회로가 직접 접속됨으로써 전원 전류는 귀환될 수 있어야 한다.
2) 전원 전류 귀환 회로는 차량에 고장이 발생한 경우 단락회로 차단시스템의 성능에 영향을 미치지 않아야 한다.
3) 차체와 대차 프레임은 전류 귀환 모선에 연결되거나 접지장치에 직접 연결되어야 하며 또는 (낮은 전류로 인하여 베어링이 손상될 위험이 없어서) 적절한 경우에는 차축 베어링에 연결될 수 있어야 한다.
4) 차체에는 승강장 등에 설치되어 있는 접지설비와 적합한 접지장치를 설치하여야 한다.
5) 인체에 접촉하여 감전 등 상해를 줄 수 있는 장치나 기기 표면에는 보호접지가 되어 있어야 하며 보호접지는 고장이 발생한 경우 노출된 도체 부분이 전기 충격을 일으키지 않도록 하기 위해 적절한 강도와 통전능력을 제공할 수 있는 크기여야 한다. 보호접지 커넥터는 어떠한 조건에도 효과를 발휘할 수 있는 상태여야 한다.
6)철도차량에 설치된 접전장치 및 그 밖의 고압기기는 절연되어야 하고 비상시에 대비하여 차체와 접지되어야 한다.
7) 직류 50V, 교류 24V 이상의 전기기기는 안전하게 접지되어야 한다. 다만, 절연이 유지되는 전기기 기는 그러하지 아니하다.
8)철도차량 외부의 안테나는 전차선으로부터 보호되어야 할때 접지되어야 한다.
9) 접지 회로의 전기적 저항은 고장이 발생한 경우, 동시 접근 가능한 두 개의 금속 부분 간의 토성된 전압이 인체에 충격을 주지 않도록 유지될 수 있어야 한다.

3.2.5.5 전자기유도장애의 억제
1) 철도차량에 설치된 기기 또는 장치로부터 발생할 수 있는 전자기유도장해는 철도차량내의 다른 장치 · 지상설비 및 다른 노선의 설비의 안전에 영향을 미치지 아니하도록 최대한 억제하여야 한다.
2) 철도차량에 설치된 전기장치는 운행중 외부로부터의 전자기 유도장해의 영향을 받지 아니하고 철도차량의 정상기능을 확보할 수 있어야 한다.
3) 전압 및 전류의 순시 변화율이 높은 전선이나 전기부품은 다른 부품이나 전선과 이격 또는 차폐시키거나 필터 등을 사용함으로써 전자기유도장해가 최대한 억제되어야 한다.
4) 철도차량 및 철도차량에 설치된 전기설비의 전자파적합성은 KS C IEC 62236-1, KS C IEC 62236-2, KS C IEC 62236-3-1, KS C IEC 62236-3-2, IEC 62236-1, IEC 62236-2, IEC 62236-3-1, IEC 62236-3-2 을 따르며, KS C 표준과 IEC 국제표준간의 상이한 사항은 최신판을 적용한다.

3.2.5.6 오조작방지
오조작에 의하여 위험을 초래할 수 있는 전기장치는 그 위험으로부터 보호될 수 있는 장소에 설치되어야 하며, 오조작을 방지할 수 있는 잠금장치를 갖추어야 한다.

3.2.5.7 배선 및 전기기기의 배치
1) 철도차량의 배선은 적절하게 지지되고 마모 또는 손상으로부터 보호될 수 있는 곳에 설치되어야 한다.
2) 철도차량간에 연결되는 각종 전선은 예상 최대변위에서의 비틀림·진동 및 충격 등에 견딜 수 있도록 충분한 여유를 가져야 하며, 유지보수가 용이한 구조로 설치되어야 한다.
3) 전선의 단자는 운행중 발생하는 기계적 충격 및 진동에 의한 풀림을 방지할 수 있는 구조이어야 한다.
4) 철도차량의 배선·단자 및 전기장치에는 식별이 용이하고 쉽게 지워지지 아니하는 표시가 있어야 하며, 사용중 추가적인 표시가 가능하여야 한다.
5) 철도차량의 배선은 유도장애를 고려하여 전선관 및 전선덕트(Duct) 안에 사용전압 및 기능별로 분리하여 수용되어야 한다.
6) 전기회로는 철도차량기기의 전기부식이 최소화되도록 구성되어야 한다.

3.2.6 위험도분석

3.2.6.1 적용범위
1) 신청자는 해당 도시철도차량(모노레일경전철)의 설계·제작·유지보수 및 운영환경 전반에 걸친 위험도분석을 수행하여 필요한 안전대책을 제시하고, 해당 철도차량의 위험도가 설계단계부터 적절한 수준으로 제어되는 것임을 입증하여야 한다.
2) 철도차량의 위험도분석은 신규로 제작·조립·수입되는 기관사승무원 또는 승객이 탑승하는 동력차·부수차(제어차 포함)에 대하여 실시한다. 다만, 위험도분석을 시행한 철도차량과 동일한 운영조건에서 동일한 구조, 시스템 및 장치 재질을 갖는 철도차량에 대해서는 위험도분석을 실시하지 아니할 수 있다.

3.2.6.2 위험도분석 절차
1) 철도운영자는 도입하려는 철도차량에 대한 위험도 관리수준을 정하고 예비위험분석(PHA)을 실시하여 본 기술기준에 정한 의무요건의 확인과 승객, 공중, 직원의 안전 및 운영안전을 보장하는 요구사항을 판별하여야 한다.
2) 신청자는 예비위험분석 결과를 반영하여 철도차량을 설계하고, 제작, 시험평가, 운영 및 유지관리 전반에 걸친 위험도분석 보고서를 작성하여 검사기관 또는 전문기관에 제출하여야 한다.
3) 검사기관 또는 전문기관은 제출된 위험도분석 보고서에 대해 적합성 검토를 수행한 후, 철도차량 설계를 승인하여야 한다.
4) 검사기관 또는 전문기관은 제작된 철도차량을 대상으로 위험도분석 보고서의 안전대책을 확인하는 검사를 수행한다.

3.2.6.3 위험도분석 방법
1) 철도차량의 위험도분석은 다음 각 호의 절차에 따라 실시하여야 한다. 다만, 타당한 사유와 합리적인 근거가 있는 경우는 그러하지 아니할 수 있다.
 (1) 사고를 유발할 수 있는 위험사건을 식별하고 위험요인을 분석하여, 분석된 위험요인이 사고로 전개될 수 있는 사고사례로 작성한다.
 (2) 각각의 사고사례나리조에서 위험사건의 발생확률을 신정한다.
(3) 각각의 사고시나리오에서 사고가 파해에 미치는 영향을 분석하여 결과지각도를 산정한다.
(4) 각각의 사고시나리오에서 위험사건의 발생활률과 결과지각도를 산출하여 위험도평가를 실시한다.
(5) 위험도평가 결과가 요구하는 안전수준을 만족하지 못하는 경우에는 그에 대한 원인을 분석하고 요구하는 안전수준에 적합하도록 안전대책을 수립한다.
(6) 수립된 안전대책이 요구하는 안전수준에 적합하며, 경제적 측면에서 적정한 것임을 확인하여 안전대책의 검증을 실시한다.
2) 철도차량의 위험도 분석을 실시하는 경우에는 다음 각 호를 고려하여야 한다.
 (1) 위험도 분석을 위한 기본 자료는 타당성을 입증할 수 있도록 충분히 조사기술 하여야 한다.
 (2) 위험도 분석은 가능한 한 정량적인 방법으로 실시하되, 정량적인 방법이 곤란한 경우에는 기존의 경험 또는 사례를 이용하거나 정성적인 방법을 적용할 수 있다.
 (3) 자료의 조사 및 위험도평가는 가능한 한 최근에 확립된 방법 및 기술을 사용하여 실시하며, 적용된 방법 및 기술을 명시하고 이용된 자료 또는 가정은 그 출처를 분명히 하여야 한다.
(4) 위험요인을 분석하고 사고시나리오를 작성하는 경우 철도차량에서의 위험요인을 승객탑승구역, 승객접근구역, 접근계한구역 등으로 구획하여 승객, 직원 및 공중에 대한 인명피해 및 중대한 재산상의 손실 우려가 있는 위험요인 및 사고시나리오를 검토하여야 한다.
(5) 철도차량의 위험도 분석은 철도차량 또는 열차의 운행조건과 선로변 또는 승강장의 안전시설 등의 상호관련성, 비상사태가 발생하는 때에 승객 및 승무원의 구조를 위한 철도운영기관, 소방기관, 의료기관 등의 제반 활동사항을 포함하여야 한다.
(6) 위험도 분석의 세부기준에 관한 본 기술기준에서 정하지 아니한 사항은 관련된 국가규격 및 국제규격을 준용할 수 있다.
3) 화재안전 위험도 분석
 (1) 철도차량의 화재안전을 위한 위험도 분석은 다음 각 호를 고려하여 실시하여야 한다.
 가. 화재 발생 사고시나리오 : 방화, 차량기기의 발열, 전기장치의 화재, 외부에서 발생한 화재의 차량전파, 터널이나 고가구조물 등 대피 및 소화접근이 어려운 장소에서의 화재 발생 등 대상 차량의 운영 시스템으로부터 발생 가능한 화재발생 사고시나리오를 합리적으로 포함하여야 한다.
 나. 화재의 규모 : 화재 발생 사고시나리오와 철도차량의 차체 및 실내의 설비로부터 발생 가능한 화재의 규모(열연가독성가스 발생량 등)에 관한 사항을 고려하여야 한다.
 다. 전기화재 안전기능 : 전기장치, 전기회로 및 배선 등의 적절한 절연 확보 및 누전이나 허전 전선 등 고정에 대비한 신속한 전력 차단 및 회로 보호 등의 전기화재 안전기능 확보에 관한 사항을 고려하여야 한다.
 라. 감지 및 경보체계 : 화재의 예방 감지, 승객승무원에 의한 비상 연락, 안전설비에 의한 화재 감지 및 경보 체계에 관한 사항을 고려하여야 한다.
 마. 화재의 진압체계 : 화재가 발생하는 경우 승객, 승무원 또는 안전설비에 의한 신속한 초기대응과 화재진압 등에 관한 사항을 고려하여야 한다.
 바. 화재전파의 차단 : 화재 또는 연기 등이 감지된 경우 승객을 보호하고 화재의 성장과 전파를 방지할 수 있는 화재 전파의 차단 능력에 관한 사항을 고려하여야 한다. 필요한 경우 공기조화 및 화기장치를 통한 화재의 전파 및 기능제어 등에 관한 사항을 포함하여야 한다.
 사. 탑승자의 대피유도 : 열차에 화재가 발생한 경우 탑승자의 안전한 대피유도 체계를 고려하여야 한다. 대피 유도를 위하여 열차를 안전한 장소로 이동하는 동안의 운행체제 관련
장치의 기능 확보에 관한 사항을 포함하여야 한다.
아. 비상탈출 지원 설비 : 승객 또는 승무원 등의 탑승자가 화재(열,연기 및 독성가스 등)로부터 안전하게 보호받으며 탈출하는데 필요한 비상탈출 지원 설비에 관한 사항을 고려하여야 한다.
(2) 철도차량의 화재안전을 위한 위험도분석은 철도차량의 위험요인(Hazard)으로부터 발생 가능한 사고사례나의 발생확률과 결과심각도에 의하여 수행하며, 결과심각도는 통계적 기법을 활용한 사고사례 영향분석 또는 전산 화재대피모사 또는 실물(모형) 화재시험 등으로 수행하여야 한다.
가. 전산화재모사 및 전산대피모사의 경우 공학적 타당성이 검증된 해석코드를 이용하여야 하며 입력데이터의 유효성은 다음과 같다.
가) 철도차량에 사용된 내외장 설비에 대한 중형 및 소형 시험시험 결과 또는 이로부터 계산된 화재특성
나) 자동소화설비를 포함한 화재해석의 경우에는 시험결과로 입증된 소화성능을 사용한다. 대피 지원설비를 포함한 대피시간해석의 경우에는 해당설비에 대한 대피 성능 검증 결과를 사용한다. 전산대피모사의 경우 승객 및 승무원의 대피에 요구되는 시간을 해석하여야 하며, 이 때 노약자나 장애인의 탑승 비율을 고려하여야 한다.
다. 실물(모형)화재시험의 경우 대상 차량과 동등성이 검토된 구조와 실내설비에 대하여 수행하여야 한다.
4) 충돌안전 위험도분석 : 철도차량의 충돌안전을 위한 위험도분석은 다음 각 호를 고려하여 실시하여야 한다.
(1) 운행제어장치, 제동장치 등 열차나 철도차량의 기술적 결함, 신호장치의 불능이나 과속운행과 같은 운전취급 오류 등에 의한 열차간의 충돌사고, 선로장장물이나 외부장애물과 같은 장애물 충돌사고의 위험성을 고려하여야 한다.
(2) 상대적인 충돌속도와 대상물의 중량을 고려한 충돌에너지 분산 흡수, 운전실 및 객실에 대한 침입 및 관통 방지, 생존 공간 및 탈출로 확보, 철도차량 간 타고차를 방지 등 승객 및 승무원의 피해를 최소화 할 수 있는 철도차량의 충돌안전설계 구조에 관한 사항을 고려하여야 한다.
(3) 최근속도로 운행중인 열차나 철도차량에서 정상적인 제동기능 외에 급긴한 경우에도 안전하고 신속하게 작동할 수 있는 비상제동기능의 확보에 관한 사항을 고려하여야 한다.
(4) 차량신호장치에 대한 지상신호설비와의 적합성, 운행제어 안전액션장치(기관사보안장치와 종합제어장치를 포함하여 철도차량의 운행을 조정하는 장치를 말한다.) 및 소프트웨어(S/W)에 대한 패일-세이프(fail-safe)기능 또는 이중화(redundancy) 구성, 운행상태 감시, 고장 경보 및 보호 기능의 확보와 자동열차 제어 또는 비상정지 등의 운전보안 기능 확보에 관한 사항을 고려하여야 한다.
(5) 선로 주변의 각종 안전설비나 철도교통관계설정 등으로부터의 위험 정정보고 지시를 전달받고, 선로 상 지장물이나 건설물 등 장애물을 완화하게 통보받을 수 있는 비상통신 및 열차방호 기능의 확보에 관한 사항을 고려하여야 한다.
(6) 기관사의 운전취급 오류나 규정위반을 예방할 수 있는 운행제어, 제동제어, 집전제어, 신호 통신, 운전보안, 열차방호, 속도표시 장치 등의 조정장치(MMI : Man-Machine Interface)를 고려한 설치, 배치 및 고장관리에 관한 사항을 고려하여야 한다.
(7) 충돌 전후의 급격한 가 감속에 대비한 운전실 또는 객실 내부의 의자, 선반 등 고정설비의 안전한 설치와 승객 및 승무원이 선반 소화물 혹은 실내설비와 충돌 시 피해를 최소화 할 수
한국철도기술연구원
KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

있는 충돌안전 실내설계에 관한 사항을 고려하여야 한다.
(8) 열차의 최고속도에서 중압이나 외부물체의 충격 등에 대비한 운전실 전면창, 객실 출입문 및 창문 등의 안전성능 확보에 관한 사항을 고려하여야 한다.
5) 탈선안전 위험도분석 : 철도차량의 탈선안전을 위한 위험분석은 다음 각 호를 고려하여 실시하여야 한다.
 (1) 주행장치, 제동장치 등 열차나 철도차량의 기술적 결함, 신호지시위반이나 과속운행과 같은 운전취급 오류 등에 의한 열차탈선사고, 선로지상물이나 외부장애물과 같은 장애물에 의한 탈선사고의 위험성을 고려하여야 한다.
 (2) 차량련하여야 할 사항은 증량포도 및 축중에 대한 기준 만족, 최소기상구간, 통과 등 열차의 정지 및 운행상황에서의 탈선 위험방지설계에 관한 사항을 고려하여야 한다.
 (3) 규정된 열차 운행조건에서 차량운용과 선로 간 작용력을 최소화하여 주행안전성을 확보하고 교선구간에서의 전복을 방지할 수 있는 구조설계와 장치의 안전성능 확보에 관한 사항을 고려하여야 한다.
 (4) 차륜, 차축, 운축, 축상조립장치, 현가장치, 차체지지장치, 대차들 등 주행장치에 대하여 규정된 운행조건에서의 하중, 진동 및 충격 등에 의한 손상방지와 보호에 관한 사항을 고려하여야 하며, 필요한 경우 고장검지 및 이상통보에 관한 사항을 포함할 수도 있다.
 (5) 최고속도로 운행 중인 열차나 철도차량에서 정상적인 제동기능 외에 급박한 경우에도 안전하고 신속하게 작동할 수 있는 비상제동기능의 확보에 관한 사항을 고려하여야 한다.
 (6) 차량신호장치에 대한 자동신호설비와의 적합성, 운행제어 안전액션장치 및 소프트웨어(S/W)에 대한 패일-세이프 기능 또는 이중화(redundancy) 구성, 운행상태 감시, 고장 검지 및 보호 기능의 확보와 자동열차 제어 또는 비상정지 등의 운전보안 기능 확보에 관한 사항을 고려하여야 한다.
 (7) 선로 주변의 각종 안전설비나 철도교통관계설 등으로부터의 위험 정보나 지시를 전달받고, 선로 상 장애물이나 장지 상황을 원활하게 통보받을 수 있는 비상통신 및 열차방호 기능의 확보에 관한 사항을 고려하여야 한다.
 (8) 열차의 운행상태를 기관사가 즉시 확인할 수 있는 운행상태 확인 장치와 기관사의 운전취급 오류나 규정위반을 예방할 수 있는 운행제어, 제동제어, 집전제어, 신호통신, 운전보안, 열차방호, 속도표시 장치 등의 조정장치를 고려한 설치, 배치 및 기관관리에 관한 사항을 고려하여야 한다.
 (9) 탈선 전후의 급격한 가감속에 대비한 운전실 또는 객실 내부의 의자, 선반 등 고정설비의 안전한 설치와 승객 및 승무원의 피해를 최소화 할 수 있는 실내설비의 손상방지에 관한 사항을 고려하여야 한다.
 (10) 선로상의 장애물 충격 등에 대비한 장애물 제거기와 열차 분리나 차량구명을 방지할 수 있는 연결기의 구조 및 안전성능 확보에 관한 사항을 고려하여야 한다.

3.2.6.4 위험도분석 결과기록
 1) 철도운영자는 예비위험도분석 결과보고서에 다음 각 호와 같은 내용을 포함하여 기록한다.
 (1) 철도운영개요, 기반시설 내용 및 주요특성, 열차운행계획 등 도입되는 열차나 차량운행에 관한 전반적인 개요를 기술한다.
 (2) 철도운영과 기반시설에 의한 제약사항, 차량 및 열차의 안전요구 특성, 열차운행 및 유지관리 조건 등 철도차량 또는 열차의 전반적인 운행안전에 영향을 미칠 수 있는 위험요인을 확인하고 안전성을 검증할 수 있도록 설계에 관한 요구사항을 상세하게 기술한다.
(3) 실시된 위험도분석 결과를 상세하게 기술하고, 이를 바탕으로 철도차량의 안전운행을 위한 안전대책 실행계획 수립에 반영한다.
(4) 위험도분석에 활용한 참고자료 및 인용문헌 등을 기술한다.
2) 신청자는 위험도분석 결과를 상기 1)항에 준하여 차량 설계 및 제작에 필요한 항목에 대해 기술 하되 관련 항목을 조정하여 기록할 수 있다.
3) 신청자는 위험도분석 결과보고서를 체계적으로 관리하여야 한다.

3.2.7 철도소프트웨어

3.2.7.1 소프트웨어 안전
1) 신청자는 철도 차량에 사용되는 응용소프트웨어, 운영소프트웨어, 펌웨어 등의 소프트웨어에 대하여 형식승인검사 또는 환경검사 대상을 제안하여야 한다.
2) 신청자는 소프트웨어 개발 및 사용 전에 품질보증계획을 수립하고 이를 문서로 작성하여야 한다.
3) 신청자는 정기적으로 검사를 실시하여 품질보증계획에 따라 업무가 수행되었는지 여부를 확인하고 동 계획의 효율성을 평가하여야 한다.
4) 신청자는 소프트웨어가 의도된 기능을 수행할 수 있도록 소프트웨어 개발 요건, 확인 및 검증 요건, 안전성분석 요건 등의 품질보증 요건에 맞추어 소프트웨어에 대한 계획, 설계, 구현, 시험, 설치, 운영 및 유지보수를 하여야 한다.
5) 신청자는 소프트웨어 개발 및 사용 전에 소프트웨어 형상관리 계획을 수립하여야 하고, 이를 문서로 작성하여야 한다.
6) 신청자는 소프트웨어 생명주기전반에 항상관리계획에 따라 항상항목 식별업무, 항상항목 통제업무, 항상 상태 기록 및 보고 업무의 항상관리활동을 수행하여야 한다.
7) 신청자는 항상관리계획서에 따라 정기적으로 소프트웨어의 항상검사를 실시하여 소프트웨어 항상관리계획서에 따라 업무가 수행되었는지 여부를 확인하고 동 계획의 효율성을 평가하여야 한다.
8) 신청자는 소프트웨어 안전확보를 위해 철도소프트웨어에 대한 국제표준 IEC 62279를 기반으로 안전활동을 하여야 한다.
9) 신청자의 소프트웨어 전부 또는 일부가 신청자와 독립된 전문기관으로부터 국제표준 IEC 62279 기준으로 독립평가를 받은 경우 신청자는 독립평가 대상소프트웨어에 대하여 3.2.7의 대응 항목에 대한 검사면제를 요청할 수 있으며, 검사기관은 요청에 따라 대상, 범위, 평가항목을 검토하여 대응 항목의 검사를 면제할 수 있다. 다만, 검사면제 요청 시 제출되는 독립평가보고서의 발행기관은 ISO/IEC 17020에 따른 검사항목 또는 ISO/IEC 17065에 따른 인증업무 자격기관으로 제한한다.
10) 신청자의 소프트웨어 안전활동은 제출된 서류를 바탕으로 검사하며, 필요 시 검사기관은 신청자가 협의를 거쳐 현장방문을 통한 검사를 시행할 수 있다.

3.2.7.2 계획수립
1) 3.2.6(위험도분석)에 따른 철도차량에 대한 예비위험도 분석을 통해 위험도 관리수준을 결정하고, 정해진 관리수준에 따라 신청자는 철도차량 소프트웨어 안전관리를 실시해야 한다.
2) 신청자는 IEC 62279에서 권고한 조직 구성 및 조직간 독립성을 확보하여야 한다.
3) 신청자는 소프트웨어 품질보증 계획, 소프트웨어 형상 관리 계획 및 소프트웨어 검증 및 확인 계획을 수립하여야 하고, 이를 문서로 작성하여야 한다.
4) 신청자는 수립된 계획의 현황과 적합성을 정기적으로 점검하여야 하고, 점검결과에 따라 필요하
다만 소프트웨어 계획을 수정 및 보완하여야 한다.
5) 신청자는 소프트웨어 개발계획에 따라 다음 각 호의 사항을 포함한 확인 및 검증계획을 수립하고 이를 문서로 작성하여야 한다.
 (1) 확인 및 검증 업무에 참여하는 주요 조직, 기능 및 책임사항
 (2) 확인 및 검증 업무의 주요 일정 및 필요한 자원
 (3) 생명주기의 각 단계에서 수행되어야 할 확인 및 검증의 업무, 절차 및 기법
 (4) 확인 및 검증 업무의 보고
6) 신청자는 확인 및 검증계획의 현황과 적합성을 정기적으로 점검하여야 하고, 점검결과에 따라 필요하다면, 확인 및 검증계획을 수정 및 보완하여야 한다.
7) 신청자는 소프트웨어 개발 전에 다음 각 호의 사항을 포함한 소프트웨어 안전계획을 수립하여야 하고, 이를 문서로 작성하여야 한다.
 (1) 안전성 활동에 참여하는 주요 조직, 기능 및 책임사항
 (2) 안전성 활동의 업무에 필요한 교육 및 훈련에 관한 사항
 (3) 생명주기의 각 단계에서 수행되어야 할 안전성활동 업무 및 업무의 관리내용

8) 신청자는 소프트웨어 안전계획의 현황과 적합성을 정기적으로 점검하여야 하고, 점검결과에 따라 필요하다면, 소프트웨어 안전계획을 수정 및 보완하여야 한다.

3.2.7.3 요구사항 정의
1) 신청자는 소프트웨어에 대한 다음 각 호의 요구사항을 정의하여야 하며, 그 결과를 문서로 작성하여야 한다.
 (1) 소프트웨어의 기능
 (2) 소프트웨어의 성능
 (3) 소프트웨어의 외부 연계
 (4) 소프트웨어의 신뢰성 관련 요구사항
 (5) 소프트웨어의 안전성 관련 요구사항
 (6) 소프트웨어의 보안성 관련 요구사항
2) 신청자는 소프트웨어 요구사항에 대하여 다음 각 호의 소프트웨어 확인업무를 수행하고 그 결과를 문서로 작성하여야 한다.
 (1) 발주자의 요구사항과 소프트웨어 요구사항의 적합성 분석
 (2) 요구사항 공정특성의 적합성 확인
 (3) 하드웨어, 사업자 및 기타 시스템과의 연계요구사항에 대한 적합성 확인
3) 신청자는 소프트웨어 요구사항에 대하여 안전활동을 수행하여야 한다.

3.2.7.4 소프트웨어 설계
1) 신청자는 정의된 요구사항을 바탕으로 소프트웨어 구조 및 상세 설계를 수행하여야 하며, 그 결과를 문서로 작성하여야 한다.
2) 신청자는 소프트웨어의 구조설계 및 상세설계에 대하여 다음 각 호의 확인업무를 수행하고 그 결과를 문서로 작성하여야 한다.
 (1) 소프트웨어 요구사항이 소프트웨어 설계에 정확하게 반영되었음을 확인하는 추적성 분석
 (2) 설계요소 공정특성의 적합성 확인
 (3) 하드웨어, 사업자 및 기타 시스템과의 소프트웨어 연계설계의 적합성 확인
3) 신청자는 설계에 대하여 안전활동을 수행하여야 한다.
3.2.7.5 소프트웨어 구현
1) 신청자는 소프트웨어 설계 내용을 소프트웨어 소스코드로 구현하여야 한다.
2) 신청자는 수립된 통합계획에 따라 소프트웨어 통합을 수행하여야 한다.
3) 신청자는 소프트웨어의 소스코드에 대하여 다음 각 호의 확인업무를 수행하고 그 결과를 문서로 작성하여야 한다.
 (1) 소프트웨어 구조 및 설계가 소스코드로 정확하게 구현되었음을 확인하는 추적성 분석
 (2) 소스코드 구성요소의 공정특성의 적합성 확인
 (3) 소스코드의 하드웨어, 사업자 및 기타 시스템과의 연계 적합성 확인
4) 신청자는 소프트웨어 소스코드에 대하여 안전력을 수행하여야 한다.

3.2.7.6 소프트웨어 시험
1) 신청자는 단위시험, 통합시험, 시스템시험에 대한 계획 및 절차를 수립하여야 하고, 이를 문서로 작성하여야 한다.
2) 신청자는 시험계획 및 절차에 따라 시험을 수행하고, 그 결과를 문서로 작성하여야 한다.
3) 신청자는 시험에 대한 시험계획서, 절차서 및 보고서 내의 상호관계에 대한 추적성을 분석하여야 하며, 그 결과를 문서로 작성하여야 한다.
4) 신청자는 시험에 대한 시험계획, 절차 및 결과에 대하여 안전력을 수행하여야 한다.

3.2.7.7 소프트웨어 설치
1) 신청자는 완성시험, 시운전시험을 통하여 소프트웨어가 시스템에 정확히 설치되었고 요구되는 기능을 정확히 수행하는지를 확인하고 관리하여야 한다.
2) 신청자는 소프트웨어를 시스템에 설치할 경우에 설치관련 안전요구사항의 준수여부를 확인하여야 하며, 그 결과를 문서로 작성하여야 한다.

3.2.7.8 소프트웨어 유지보수
1) 신청자는 유지보수계획에 따라 다음 각 호의 유지보수활동을 수행하여야 한다.
 (1) 소프트웨어 변경요구의 확인
 (2) 문제점 보고
 (3) 소프트웨어 수명주기 활동의 재수행
2) 신청자는 소프트웨어 운영 중에 요구되는 소프트웨어의 변경에 대하여 다음 각 호의 업무를 수행하여야 한다.
 (1) 소프트웨어 운영시 부적합사항으로 인한 영향을 평가
 (2) 소프트웨어의 변경사항에 대한 확인 및 검증업무의 반복 정도를 판단
 (3) 승인된 변경사항에 적합하도록 확인 및 검증계획을 개정
 (4) 소프트웨어 수명주기에 따라 확인 및 검증업무를 재수행
3) 신청자는 소프트웨어 운영 중에 발생하는 소프트웨어의 변경에 대하여 안전성 분석을 수행하여야 하며, 그 결과를 문서로 작성하여야 한다.

3.2.7.9 철도소프트웨어 기술기준 시행
1) 철도소프트웨어 기술기준은 소프트웨어의 안전기능에 적용한다.
2) 종전의 성능시험 및 제작검사를 받은 차량에 사용된 안전기능 소프트웨어와 소스코드가 동일한 경
우 해당 소프트웨어는 점증받은 것으로 인정할 수 있다.
3) 국토교통부장관은 국내 철도 소프트웨어 개발 현황을 감안하여 철도소프트웨어 관련 기술기준의 시행을 2017년 5월 31일까지 유예한다.

3.3 성능

3.3.1 운행조건
3.3.1.1 기후조건
1) 신청자는 다음 각 호의 기후조건에 대한 해당 도시철도차량(모노레일경전철)의 적합성을 입증하여야 한다.
 (1) 외기조건 : 온도, 습도, 풍속
 (2) 기타조건 먼지, 눈, 비 등의 요구조건
2) 신청자는 제 1)항의 기후조건을 제안하여 입증하며, IEC 62498-1 등을 참고할 수 있다.

3.3.1.2 하중조건
1) 신청자는 다음 각 호에 해당하는 하중조건에 대한 해당 도시철도차량(모노레일경전철)의 적합성을 입증하여야 한다.
 (1) 승객 1인당 하중기준
 (2) 평균 당 최대 승객 하중량(성능/강도기준)
 (3) 관성질량 보상계수 : 동력차 / 부수차
2) 승객의 하중은 소지품을 포함한 중량으로서 차량발주자의 요구사항에 따른다. 다만, 차량발주자의 요구사항이 없는 경우, 신청자는 EN 15663, UIC 566 등을 참고할 수 있다.

3.3.1.3 운전조건
1) 신청자는 다음 각 호에 해당하는 운전조건에 대한 해당 도시철도차량(모노레일경전철)의 적합성을 입증하여야 한다.
 (1) 노선 평면선형 및 노선 종단, 편성열차 당 1일 평균 주행거리
 (2) 운행시간에 대해 1km 당 예비시간과 각 정차역에서 정차시간을 갖도록 설계, 제작되어야 하며, 이 시간은 지상의 신호장치에 의해 가변될 수 있어야 한다. 특히 각 역에서의 정차시간과 출입문 닫힘 예고 방송과의 관계를 고려하여야 한다.
2) 신청자는 제 1)항에 대한 발주자의 요구사항을 고려하여 설계하여야 한다.

3.3.2 운행성능
1) 신청자는 도시철도차량(모노레일경전철)에 대해 다음 각호에 해당하는 성능을 입증해야 한다.
 (1) 최고속도
 (2) 역행성능
 (3) 제동성능
 (4) 집전성능
 (5) 열차 주행저항
 (6) 진동
 (7) 승차감
2) 해당 도시철도차량(모노레일경전철)에 대한 제1)항의 성능기준은 신청자가 제안하여 입증한다.

3.4 인터페이스

3.4.1 차량-전력

3.4.1.1 전압 및 주파수 범위
정격전압에 대한 운행성능을 보장하는 전압과 주파수 범위는 KS C IEC 60850, IEC 62313 등을 참고할 수 있다.

3.4.1.2 회생제동
1) 교류전력 공급 시스템에서 운행되는 도시철도차량(모노레일경전철)은 전력 교환을 수행할 수 있는 회생이 허용하도록 설계되어야 한다. 전력 공급 시스템 내 변전소 제어 및 보호 장비들은 회생제동을 허용해야 한다.
2) 직류전력 공급 시스템에서 운행되는 도시철도차량(모노레일경전철)은 전력 교환을 수행할 수 있는 회생이 허용되도록 설계되어야 한다.
3) 회생제동과 관련한 설계 및 입증은 KS C IEC 60850, IEC 62313 등을 참고할 수 있다.

3.4.1.3 집전장치 정적 접촉력
1) 정적 접촉력에 의해 전차선 상에 가해지는 정적 접촉력은 KS C IEC 60494-2 등을 참고하여 정적 접촉력 범위 이내에서 조정 가능해야 한다. 다만, 제3궤조 방식의 집전장치가 적용된 경우에는 정적 접촉력이 조정되지 않을 수 있다.
2) 집전장치와 필요한 접촉력을 제공하는 그들의 메커니즘은 집전장치가 해당 도시철도차량(모노레일경전철)이 운행되는 전차선 장비 상에서 사용될 수 있음을 보장해야 한다. 세부적인 사항 및 평가와 관련해서 KS C IEC 60494-2 등을 참고할 수 있다.

3.4.1.4 전차선과의 동적거동
1) 차량과의 인터페이스를 위하여 집전장치의 설치위치는 3.2.1(차량한계)를 충족하여야 한다.
2) 동적 거동에 관한 요건들은 EN 50318, KS C IEC 60913 등을 참고한 이론해석 결과를 만족해야 하고, IEC 62486 등을 참고한 동적 거동 성능을 만족하여야 한다. 동적거동 시험에 사용되는 시험 장치는 EN 50317 등을 참고할 수 있다.

3.4.1.5 집전장치 배열
1) 1채 이상의 집전장치가 전차선과 동시에 접촉하는 것이 허용되어야 한다.
2) 2채 이상의 집전장치가 설치되는 모노레일경전철의 경우 첫번째와 마지막 집전장치 사이의 최대 간격은 열차가 절연구간을 통과할 수 있도록 배치되어야 한다. 또한 전차선과 접촉하고 있는 모든 2개의 연속적인 집전장치 사이의 간격은 절연구간의 조건에 따라 배치되어야 한다.
3) 교류전력 공급시스템 상에서 운행되는 경우 복수의 집전장치들이 장착된 열차들은 사용 중인 집전장치들 사이에 전기적 연결이 있어서는 안 되며, IEC 62486의 Annex A 등을 참고하여 전기적으로 문제가 없이 배열하여야 한다.
3.4.1.6 절연구간 주행
1) 도시철도차량(모노레일경전철)은 노선 상의 절연구간들에 대한 정보를 자동으로 수신할 수 있어야 한다. 단, 적절한 지상설비가 구축되어 있는 경우에 한한다.
2) 절연구간에서 열차 상의 접전장치들의 동작은 자동으로 개시되어야 한다. 다만 동작의 자동기능은 차량발주자가 요구하는 경우에 한한다.
3) 절연구간을 통과 전/후에 추진장치가 문제 없도록 동작하여야 한다.
4) 신청자는 KS C IEC 60913, KS C IEC 60494-2 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구사항을 입증할 수 있다.

3.4.1.7 절진차단 절연
1) 접전장치들은 그 설치된 위치 및 사용전압을 고려하여 절연거리 및 연면거리를 확보하여 설치되어야 한다.
2) 접전장치들의 절연 관련 전압은 KS C IEC 60850, 절연 관련 조건은 IEC 62497-1 등을 참고할 수 있다.

3.4.2 차량-신호
3.4.2.1 지상신호장치와 인터페이스
1) 지상신호장치와의 인터페이스
 (1) 해당 선구에 운영하는 모든 도시철도차량(모노레일경전철)은 사용 중인 지상신호장치들과 상호연계 운영이 가능하여야 한다.
 (2) 지상-차상 신호장치간 인터페이스 매체는 무선통신, 유도루프, 고정지상자(예: 발리스) 등이 있으며, 이들 중 하나 또는 다수를 통해 차량으로 전송되므로, 차량에서는 이 신호를 정상적으로 수신할 수 있어야 한다.
 (3) 지상에 설치된 통신매체와 원활한 통신 인터페이스 구성을 위하여 차량의 적절한 위치에 지상 통신수단과 인터페이스 할 수 있도록 설치되어야 한다.
2) 절연구간의 차량 통과
 (1) 차량이 전동차인 경우 차량이 안전하게 해당구간을 통과할 수 있어야 한다. 다만, 운행선로에 절연구간이 있는 경우에만 적용한다.
 (2) 지상신호장치로부터 전방의 절연구간 예고 정보를 받은 차량은 차량에 전기적인 무리가 없도록 안전하게 통과할 수 있어야 한다.

3.4.2.2 차상신호장치와 인터페이스
1) 운전실
 (1) 운전실 내부에 설치되는 신호장치는 기관사가 편안하게 보고 작동시킬 수 있는 위치에 배치되어야 한다.
 (2) 운전운전 차량의 경우도 수동운전을 고려하여 상기의 내용에 따라야 한다.
2) 차상신호장치에서 상용 및 비상제동신호 발생에 따라 차량의 제동장치는 즉각 동작하여야 한다.
3) 차상신호장치에서 열차의 안전거리의 열차의 성능, 구배 및 곡선 데이터, 신호 속도 제한 속도 등의 정보에 허용오차를 감안하여 계산하여야 한다.
4) 차상신호장치는 열차에 비상제동을 인가할 수 있으며, 열차가 주행 중인 선로의 인프라 정보를 포함하여 안전제동거리에 영향을 주는 다음의 사항을 고려하여 설계되어야 한다.
철도차량기술기준
KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(1) 열차의 위치 불확실성
(2) 열차길이
(3) 허용 초과속도
(4) 속도검지 오류
(5) 열차 제어 및 제동장치의 반응시간 및 지연시간
(6) 비상제동 감속도
(7) 선로의 구배 및 곡선 반경

5) 새로 적용되는 차량 신호장치의 경우 해당 선구에 운행 중인 차량의 취부공간에 적합하여야 한다.
6) 차량신호장치는 다음과 같은 차량과의 주요 인터페이스 사항이 확인되어야 한다.
 (1) 차량의 최소제동특성
 (2) 차량 하부의 장치설치조건
 (3) 차량 내 전자기 간섭환경조건
7) 차량신호장치의 기능에 장애가 발생하면 적절한 제동이 자동으로 체결되어야 한다.
8) 차량 출입문 제어
 (1) 지상신호장치와의 인터페이스를 통해 승객들이 역에서 승하차하는 동안 출입문이 제어되어야 한다. 단, 출입문 관련 차량지상신호장치와의 인터페이스 사항이 없는 경우 적용하지 아니한다.
 (2) 차량 출입문은 자동 및 수동에 의해 차량의 출입문이 개방 및 폐쇄될 수 있어야 한다.
 (3) 최소한 다음의 조건들이 충족되었을 때 지상신호장치와의 인터페이스를 통해 차량의 출입문이 개방되어야 한다.
 가. 열차가 지정된 허용치 내에서 정차 위치에 적절하게 정차하고 있음
 나. 열차의 출입문 개방 위치는 지정된 정차위치가 있음
 다. 차량에 의해 제로속도(Zero Speed) 검지됨
9) 차량신호장치는 상태정보 및 고장정보를 종합제어장치로 전송한다. 다만, 종합제어장치가 있는 경우에 한한다.

3.4.3 차량-통신

3.4.3.1 승객정보
1) 승객안내장치는 승객의 안전하고 편리한 열차이용을 위하여 실외안내표시장치, 실내안내표시장치 등으로 구성될 수 있다.
2) 열차번호표시기, 행선표시기, 객실안내표시기를 설치한다.
3) 승객안내 정보는 안내표시장치와 조화를 이루여 현시 되어야 한다.
4) 승객안내 정보는 명료하게 확인될 수 있어야 한다.
5) 표시장치의 데이터는 운영자가 쉽게 변경이 가능하여야 한다.
6) 메모리는 각 노선 전구간을 운행하는데 필요한 안내, 공지사항 전달과 향후 역의 증설 및 안내문 안 변경시에도 하드웨어의 변경 없이 사용 가능토록 충분한 용량을 가져야 한다.

3.4.3.2 차내방송장치
1) 차내방송장치는 안전운행 및 승객을 위한 자동 안내방송 및 공지사항 전달을 목적으로 하며, 승객을 위한 정차역 정보, 출입문 방향 등이 안내방송 되어야 한다.
2) 실내 및 실외를 구분하여 방송할 수 있어야 하며 출입문제어장치와 연계하여 승무원은 폐문경보
3.4.3.3 통신장치
1) 열차통신장치
(1) 열차에 설치되는 통신장치는 기관사와 철도교통관제시설간 원활하게 송수신할 수 있는 기능을 가져야 한다. 승무원이 탑승할 경우 승무원과 철도교통관제시설간의 송수신 기능도 가져야 한다.
(2) 열차 내에 설치되는 통신장치에 한하여 비상시에도 최소 3시간 이상 대기 상태를 유지 할 수 있어야 하며, 최소 30분 이상 연속동작 할 수 있어야 한다.
(3) 승무원과 승객간의 통신장치는 다음 각 호의 기능을 갖추어야 한다.
가. 객실이 있는 차량 1량 당 2개 이상 설치할 것
나. 통신장치 인근에 사용방법을 설명하는 안내표지를 촉광위치표지로 부착할 것
라. 통신장치 주변에는 통신장치 번호판 또는 순위표가 부착되어 승객이 비상사태가 발생한 열차의 위치를 확인할 수 있도록 할 것
마. 통신장치는 객실바닥면으로부터 1.2m 이하 높이에 설치할 것.

2) 비상정지설비
(1) 열차가 운행중 화재·탈선·추돌·충돌사고 등이 발생한 경우 열차를 정지시킬 수 있는 설비(이하 "비상정지설비"라 한다)가 설치되어야 한다.
(2) 비상정지설비는 인접하여 운행 중인 열차들이 일정거리 이내로 진입 시 열차를 정지시킬 수 있는 성능을 갖추어야 한다.
(3) 비상정지설비는 다음 각 호의 어느 하나의 방식으로 인접하여 운행하는 열차를 정지시킬 수 있는 성능을 갖추어야 한다.
가. 사고가 발생한 열차의 기관사가 인접하여 운행하는 열차에 방출경보를 발한 경우 이를 수신한 기관사가 열차를 정지시키는 방식
나. 사고가 발생한 열차의 기관사가 인접하여 운행하는 열차를 직접 정지시키는 방식
다. 철도교통관제시설에서 사고가 발생한 상황을 인지하여 사고가 발생한 열차의 인접하여 운행하는 열차를 직접 정지시키는 방식

3.4.3.4 승객경보
1) 해당 열차의 승객이 잠재적인 위험을 기관사 또는 관제실에 알릴 수 있는 승객경보장치가 설치되어야 한다.
2) 승객경보장치는 승객들이 쉽게 볼 수 있고, 승객이 쉽게 도달할 수 있어야 한다.
3) 승객경보의 설계 및 입증에 관하여 신청자는 EN 16334, 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 4.2.4.3(Passenger alarm) 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구사항을 입증할 수 있다. 다만, 자동제동 체결기능은 발주자의 요구사항에 따른다.

3.4.3.5 열차운행정보 저장장치
1) 열차에는 고장 또는 사고가 발생한 경우 그 원인을 분석할 수 있도록 운행정보가 기록되어야 한다.
2) 열차운행정보 저장장치는 사고시 발생하는 화재, 충돌, 충격 및 침수로부터 저장된 내용이 보호되도록 하여야 한다.
3) 제1항의 규정에 의한 운행정보는 동종사고의 재발방지를 위한 자료로 활용할 수 있도록 보존 관리되어야 한다.
4) 열차운행정보 저장장치의 설계는 IEC 62625-1 등을 참고할 수 있다.

3.4.4 차량-궤도
3.4.4.1 선로조건
1) 신청자는 다음 각 호에 해당하는 선로조건에 대한 해당 도시철도차량(모노레일경전철)의 적합성을 입증하여야 한다.
 (1) 주행 범(beam) 폭
 (2) 최대 축중
 (3) 최대 구배(본선 및 측선)
 (4) 최소곡선 반경(본선 및 측선) : 해당 철도차량이 운행하는 본선 및 측선에서의 최소반경
 (5) 최대컨트
 (6) 승강장 높이
 (7) 차량한계 등
2) 신청자는 제 1 항의 선로조건을 고려하여 설계 하여야 한다.
3) 차량-궤도 인터페이스 설계 및 입증에 관하여 신청자는 EN 14363, EN 15273-1, EN 15273-2, EN 15273-3 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증할 수 있다.

3.4.4.2 캔트 부족
도시철도차량(모노레일경전철)은 도시철도건설규칙(국토교통부령 제106호)에 따른 캔트 한계값 내에서 안전운행이 보장되어야 한다.

3.4.4.3 궤도에 가해지는 하중
1) 수직방향의 동적 차륜 하중
 차륜에 의해 주행 범에 가해지는 최대 동적 차륜하중은 최대축중 미만이어야 한다.
2) 종방향 하중
도시철도차량(모노레일경전철)에 의해 궤도 상에 가해지는 종방향 하중을 제한하기 위해, 최대 가속 또는 감속은 2.5 m/s² 미만이어야 한다.

3.4.4.4 선로의 유지보수 한계값
해당 도시철도차량(모노레일경전철)은 주행안전 또는 궤도하중에 영향을 미치는 선로의 유지보수 한계값 내에서 탈선 대비 안전성, 주행장치의 피로강도 등에 대한 사항이 보장되어야 한다.

3.4.5 차량-기관사

3.4.5.1 운전제어대
1) 운전실은 1인 기관사에 의한 철도차량의 운행이 가능하도록 설계되어야 한다.
2) 운전에 사용되는 모든 장치는 기관사의 시야범위 안에 있어야 하며, 기관사가 혼동하거나 어려움 없이 제어할 수 있도록 배치되어야 한다.
3) 운전실의 실내 배치는 기관사의 인체 측정치를 고려하여, 기관사가 정상 자세에서 우승 없이 제어할 수 있도록 배치되어야 한다.
4) 운전실 내 기관사의 이동이 장애물에 의해 방해 받아서는 안 된다.
5) 운전실 전입 구역을 제외하고 기관사의 엄마 구역에 해당하는 운전실 바닥에는 측계가 없어야 한다.
6) 운전제어대 기기배치는 선 자세와 앉은 자세 운전이 모두 가능하도록 해야 한다.
7) 운전실 제어대와 제어대상의 조작장치, 제어장치는 기관사의 인체 측정치를 고려하여, 기관사의 이동을 방해하지 않고, 가장 일반적으로 사용하는 운전 위치에서 기관사가 정상 자세를 유지할 수 있도록 배치되어야 한다.
8) 운전 중 필요한 문서를 제어대 표면에 두고 볼 수 있도록, 운전석에는 문서 열람 구역을 적절히 배치하여야 한다.
9) 조작 및 제어장치는 기관사가 식별할 수 있도록 분명하게 표시되어야 한다.
10) 견인력과 제동력을 레버로 조절할 때(결합식 또는 분리식일 수 있음)，“견인력”은 레버를 앞으로 밀면 증가하고, “제동력”은 레버를 기관사 쪽으로 당기면 증가하는 것을 권장한다.
11) 기관사가 모든 조종 위치(기관사의 착석, 기립, 기관사가 머리를 밖으로 내밀 때 등 상태)로부터 가정 경보 장비의 소리를 내도록 하는 것이 가능해야 한다.
12) 기관사가 정상적인 조정 위치(기관사의 착석, 기립 등 상태)로부터 열차의 전조등, 후미등 등을 제어하는 것이 가능해야 한다.
13) 운전실의 설계 및 입증은 UIC 534, UIC 641, UIC 644, UIC 651 등을 참고할 수 있다.
14) 무인운전방식 경전철의 운전제어대는 발주자의 요구사항으로 결정하는 것을 원칙으로 하며, 신청자는 상기 제1항 내지 제13항을 참고할 수 있다.

3.4.5.2 운전석
1) 운전석은 기관사의 인체 측정치를 고려해 앉은 자세에서 모든 정상적인 운전 기능을 수행할 수 있도록 설계되어야 한다. 기관사의 인체 측정치는 UIC 651을 참고할 수 있다.
2) 운전석은 생리학적 관점에서 기관사의 정확한 자세를 고려해야 한다.
3) 운전석은 외부 가시성을 확보하기 위해 눈 기준 위치를 맞출 수 있도록 기관사가 의자 위치를 조절할 수 있어야 한다.
4) 비상시 탈출에 착성이 방해가 되어서는 안 된다.
5) 의자와 의자의 장착 그리고 기관사의 의자 사용을 설계할 때, 인간공학 및 건강적 측면을 고려해
6) 운전석을 장착할 때는 선 자세 운전에서 필요한 여유 공간을 확보할 수 있도록 조절이 가능하게 하여 한다.
7) 무인운전방식 경전철의 운전석은 발주자의 요구사항으로 결정하는 것을 원칙으로 하며, 신청자는 상기 제1항 내지 제6항을 참고할 수 있다.

3.4.5.3 운전실 조명
1) 운전실에는 기관사가 용이하게 조작 및 확인할 수 있도록 적절한 조명장치가 설치되어야 한다.
2) 차량의 모든 정상 운행 모드에서 기관사의 제어에 의해 운전실 전체 조명이 제공되어야 한다.
("스위치 off" 포함)
3) 조명이 제공될 때, 조명의 조명과 복잡적이어야 한다.
4) 외부 운전 신호와의 위험한 혼동을 막기 위해, 가급적 운전실에 녹색 조명을 피해야 한다.
5) 운전실 조명의 설계 및 입증은 KS R 9159을 참고할 수 있다.
6) 무인운전방식 경전철의 운전실 조명은 발주자의 요구사항으로 결정하는 것을 원칙으로 하며, 신청자는 상기 제1항 내지 제5항을 참고할 수 있다.

3.4.5.4 기관사 시야확보
1) 차량 운행 중 기관사의 시야를 확보하기 위하여 기관사가 서 있는 자세 또는 앉은 자세에서 설치된 외부 상하부 신호기들을 방해받지 않고 볼 수 있고 시선을 유지할 수 있도록 운전실을 설계하여야 한다. 기관사 시야의 세부 기준은 UIC 651을 참고할 수 있다.
2) 기관사는 운전실의 양 측면으로 머리를 내밀 수 있는 창문이 갖추어야 한다.
3) 운전실은 기관사가 정지 상태에 있는 열차의 각 측의 후부를 보면서, 동시에 비상제동을 조작할 수 있도록 설계되어야 한다.
4) 앞의 요구사항은 다음 수단 중 한 가지로 충족하는 것이 허용 된다: 측면 또는 운전실 각 측의 창문을 가는 것, 실외 거울, 카메라 시스템.
5) 무인운전방식 경전철의 기관사 시야확보는 발주자의 요구사항으로 결정하는 것을 원칙으로 하며, 신청자는 상기 제1항 내지 제4항을 참고할 수 있다.

3.4.5.5 디스플레이 장치와 스크린
디스플레이 장치 또는 스크린은 기관사가 전달받은 명령 또는 정보를 적절히 사용하고 반응할 수 있도록 설계되어야 한다.

3.4.5.6 제어장치와 표시장치
1) 모든 표시장치는 자연광 또는 인공광(반연속 조명 포함) 조건하에서 정확하게 볼 수 있도록 설계되어야 한다.
2) 조명이 들어와 있는 표시장치 또는 버튼에서 유리창에 반사되는 빛이 정상 운전 위치에 있는 기관사의 시선에 간섭을 일으키지 않는 안 된다.
3) 운전실 내 차량 장비에 의해 생성되는 가청 정보는 측정했을 때, 운전실의 수신된 소음 수준 중 암각의 6dB(A) 이상이어야 한다.

3.4.5.7 기관사 감시
1) 운전실은 기관사의 활동을 모니터링할 수 있고, 기관사의 활동 부족이 감지했을 때 자동으로 열차를 멈추기 위한 장비들을 갖추어야 한다.
2) 기관사의 동작 부족이 감지되었을 때 열차 차원에서 개시되는 동작의 규격: 열차가 운행 형태를 갖추고 있고 주행 중일 때 기관사의 활동 부족(움직임 감지 기준은 저속 역치에 있다)은 열차에 대한 전체 상황제도이나 비상제도의 작동으로 이어져야 한다.
3) 운전제어대에는 수동운전시 기관사의 활동, 질병 및 부주의 등으로 발생할 수 있는 위험을 방지하기 위한 장치를 설치하여야 한다.
4) 무인운전방식 경전철의 기관사 감시는 발주자의 요구사항으로 결정하는 것을 원칙으로 하며, 신청자는 상기 제1)항 내지 제3)항을 참고할 수 있다.

3.4.5.8 운전실 표시
운전실에 설치된 각종 장치들은 개별 장치의 식별이 용이하도록 표시가 되어야 한다.

3.4.5.9 운전실 차상 도구와 휴대용 장비
비상시에 필요할 때를 대비해 운전실 안 또는 근처에 [별표 12]에서 정한 비상용품 등을 보관할 공간이 있어야 한다.

3.4.5.10 운전실 환경
1) 운전실의 수온 수준은 적절한 수단(음향 절연, 홀음)을 통해 소음원의 소음을 제한함으로써 가능한 한 낮게 유지되어야 한다.
2) 운전실은 신선한 공기의 흐름에 의해 환기가 이루어져야 한다.
3) 착석 시 환기에 의해 기관사의 적절한 작업을 방해하는 공기의 흐름이 없어야 한다.
4) 무인운전방식 차량에는 운전실 파티션을 설치하지 않을 수 있다.

3.5 운영 및 유지관리

3.5.1 유지보수 기준
지침 제7조제1항(4호)의 규정에 따른 유지보수 조건 및 기술문서는 다음 각호를 포함한다.
1) 차종별 유지보수의 종류
2) 유지보수 항목 또는 부품의 교체
 (1) 각 부품의 사용재료
 (2) 전이장치, 게기, 표시장치, 스위치 등의 위치정보, 주요기능 및 운용내용
3) 유지보수 세부 시행방법
 유지보수자가 효율적으로 검사, 조정, 장애조치, 보수, 교체를 수행 할 수 있도록 작성되어야 하며, 중수선에 필요한 상세한 기술정보(정비기준, 절차, 설비/공구, 검사 등)가 제공되어야 한다.
 (1) 하부 시스템 작동 및 정지절차
 (2) 고장 및 장애 증상과 진단방법
 (3) 비상상태의 응급처치 및 안전조건
 (4) 차량 고장 시의 정비처리대책에 대한 정보와 유효유 사양에 관한 정보
4) 유지보수 작업의 기록 및 추적성
 (1) 차량시스템의 설명은 계통도, 신호흐름도, 기능설명도, 기능배선도 및 세부 부품의 설명서가 부품 및 하부 시스템, 각 시스템 간에 관계 및 조립에 대한 설명이 되어야 한다. 매뉴얼은 각
주요장치가 분리된 부품의 그룹이 아니라 하나의 통합된 시스템으로 구성되어야 한다.
(2) 시스템 운용매뉴얼에 있는 정보사항을 다뤄야 하고, 운용 중 보수에 알맞은 장애진단 정보를 제공하는 기본 계통도와 플록다이어그램을 수록하여야 한다.
(3) 차량의 안전조건을 유지하기 위한 안전관련 주의사항, 특별유지보수절차, 경고문 또는 기타 필요한 정보를 기술하여야 한다.

3.5.2 유지보수를 위한 자료
지침 제7조제1항제4호 또는 제33조제3항제4호의 규정에 따른 유지보수 조건 및 기술문서는 다음 각 호를 포함한다.

3.5.2.1 일반 자료
운용 및 유지관리에 필요한 일반자료에는 도시철도차량(모노레일경전철)을 설명하고 있는 다음의 자료를 포함하여야 한다.
1) 시스템의 기능 및 작동을 설명, 이해할 수 있는 필수적인 상하기기·실내·옥상 배치도 및 전기·공압·유압 제어 회로 및 구조도
2) 인터페이스와 데이터 처리 및 프로토콜의 기능, 규격에 관한 설명을 포함한 컴퓨터화된 차내 시스템에 관한 설명
3) 축 하중 및 차축의 간격
4) 시험 궤도의 품질 기록을 포함하여 주행의 동적 특성과 관련된 시험 보고서
5) 대차 주행에 기인한 하중을 평가하는 데 취해진 가설들
6) 3.4.1항(차량-전력계통)에 요구된 전력 공급시스템에 대한 호환성 검토에서 고려된 가설과 데이터
7) 3.4.1항(차량-전력계통)에 요구된 가공전차선과 동시에 접촉 중인 집전장치의 수 및 평가 시험에 사용된 그들의 간격 및 가공전차선 설계 거리 타입
8) 3.6.3항(소음)에 요구된 환경 파라미터의 선택된 범위와 관련하여 취해진 조항들
9) 하중 조건에 관한 가설과의 무게 균형
10) 제동 성능
11) 추진 성능

3.5.2.2 유지보수 관련 자료
신청자는 차량을 최적의 상태로 운용하는데 필요한 각 유지보수 체계의 단계별 유지보수 항목 및 조치내역을 상세하게 기술하는 “유지보수계획” 을 제출해야 하며, “유지보수계획” 은 차량을 구성하는 각 구성품의 기능 수준, 유지보수의 경제성, 운용 제약 조건, 유사 차종의 유지보수 사례, 제작사 추천 주기 등을 고려하여 작성해야 한다.

3.5.2.3 운행 관련 자료
도시철도차량(모노레일경전철)이 운행 중에 운행이 불가능하거나 또는 고장이 발생할 경우 다음의 내용이 기술하여야 한다.
1) 성능기준 최대하중조건에서 1개편성이 고장으로 운행이 불가능할 경우 고장편성과 동일한 도시철도차량(모노레일경전철)이 본선취대구배의 경사로에서 구원운전하는 것이 가능하여야 한다.
2) 차량의 고장검지 및 표시, 운행 중 이상이 발생할 경우 승무원 응급대처 지시기능 및 월간검사 정도의 자동검사 기능 등을 갖추어 신속한 고장복구를 할 수 있어야 한다.
3.5.2.4 리프팅 도해 및 지침
1) 리프팅과 제점을 위한 철차의 설계 및 관련 지침
2) 리프팅과 제점을 위한 인터페이스의 설명

3.5.2.5 구조 관련자료
1) 응급상황시 조치절차와 비상 출구의 이용, 제동장치의 강제완해, 전기 접지, 간인(Towing) 등과 같이 수행되어야 하는 필수적 철도 조치들에 관한 설명
2) 설명된 응급조치 수단들이 취해졌을 때 예측되는 상황 및 영향, 예를 들어 브레이크 분리 후의 브레이크 성능 감소와 같은 경우의 영향에 관한 설명 등

3.6 운용한계

3.6.1 안전운행
1) 안전 관련 주요 부품 또는 구성품, 그리고 보다 특정하게는 열차의 동작과 관련된 부품 또는 구성품들의 설계, 구축이나 조립, 유지보수 및 모니터링에 특별한 고려가 필요한 경우에 대한 것들을 포함하여 부여된 목표에 해당하는 수준의 안전을 보장하는 것이어야 한다. 도시철도차량(모노레일경전철)의 경우 이 핵심 요건은 제4장(주요장치별 기준) 조항들의 기능 및 기술 요건들을 충족하여야 한다.
2) 차륜-주행범 접촉에 관련된 요소들은 최고속도에서의 안전한 주행을 보장하기 위해 요구되는 안정성 요건들을 충족해야만 한다. 도시철도차량(모노레일경전철)의 경우 이 핵심 요건은 3.2.1(차량구축)과 3.2.2(주행안전)의 기능 및 기술 요건을 충족하여야 한다.
3) 사용된 부품 또는 구성품들은 그들의 사용 기간 동안, 규정된 모든 정상적, 혹은 예외적 응력을 견딜 수 있어야 한다. 모든 토크발적 장애가 안전에 미치는 영향들은 적절한 수단에 의해 제한되어야 한다. 도시철도차량(모노레일경전철)의 경우 이 핵심 요건은 3.2.1(안전), 3.3장(주요장치별 기준)의 기능 및 기술 요건을 충족하여야 한다.
4) 고정 설비 및 철도 차량의 설계와, 사용된 재질의 선택은 화재의 발생, 전파 및 영향과 화재 발생시의 연기를 제한하여야 한다. 도시철도차량(모노레일경전철)의 경우 이 핵심 요건은 3.2.4(화재 안전), 3.3장(정통한 연기)의 기능 및 기술 요건을 충족하여야 한다.
5) 사용자에 의해 취급되도록 고안된 모든 장비들은 외부 예측 가능한, 정통한 지침에 따른 방식으로 사용된다면, 그들의 안전을 손상시키지 않도록 설계되어야 한다.
6) 도시철도차량(모노레일경전철)은 시설물, 장비, 그리고 접촉될 가능성이 있는 공공 및 개인 네트워크와 전자기적으로 호환되는 방식으로 설계되고 제조되어야 한다.
7) 도시철도차량(모노레일경전철)은 실내외 소음 관련 규정들을 고려해야 한다.
8) 전기 및 열 에너지 공급 시스템은 열차의 장치들과 호환되어야 한다.

3.6.2 보건
1) 도시철도차량(모노레일경전철)에 사용되는 재료는 그 사용방법의 영향으로 인하여 재료에 접촉하는 승객 또는 작업자가 건강상의 위해를 받을 가능성이 있는 재료, 즉 산업안전보건법시행령 제29조 제1항에 규정된 유해물질을 함유하는 재료는 사용되어서는 안 된다. 이 요건은 신규로 제작하는 차량뿐만 아니라, 운영 중 차량의 유지보수 과정까지 전 수명주기에 적용된다.
2) 도시철도차량(모노레일경전철)에 사용되는 재료는 특히 화재 시 인체에 유해하거나 위험한 연기 또는 가스의 배출을 억제하는 방향으로 선택되고, 배치되고, 사용되어야 한다.
3.6.3 소음

3.6.3.1 평가범위
소음에 대한 평가는 철도차량의 편성차량 또는 단일차량에 대하여 정차소음과 주행소음으로 구분되며, 각각의 경우에 있어 정차시 차내소음, 주행시 차내소음, 운전실 소음, 차외소음, 환경소음에 대하여 평가를 하여야 한다. 다만, 차량주행속도 조건은 최고운영속도로 한다.

1) 배경소음
한 장소에 있어서 측정하고자 하는 대상소음이 없을 때 그 장소의 소음을 대상소음에 대한 배경소음이라 하며, 대상차량이 운행되지 않는 상태에서 대상소음을 제외한 주변환경소음을 알기위해 실시한다.

2) 정차소음
정차소음은 차량의 정차상태(보조장치 및 주변장치 가동상태)에서 수행되며, 정차시 배경소음, 실내소음, 운전실소음, 실외소음을 평가하기 위해 실시된다. 다만 운전실이 없는 차량인 경우 운전실소음을 평가하지 아니한다.

3) 주행소음
주행소음은 모든 보조장치 및 주변장치를 가동한 상태의 차량을 최고운영속도에서 평가되며, 주행시 배경소음, 실내소음, 운전실소음, 실외소음을 평가하기 위해 실시된다. 다만 운전실이 없는 차량인 경우 운전실소음을 평가하지 아니한다.

4) 환경소음
대상 철도차량이 정상운행속도로 주행시 철도소음을 대표할 수 있는 장소나 철도소음으로 인하여 문제가 일으킬 우려가 있는 장소에서 소음을 평가하기 위해 실시한다.

5) 출발소음, 제동소음은 차량발주자의 요구사항에 따라 실시할 수 있으며, 검사기관 또는 전문기관에 의한 형식승인검사 또는 완성검사에서는 제외한다.

3.6.3.2 평가조건

1) 차량조건
(1) 대상차량은 평가를 위한 최소한의 인원을 제외한 공차상태를 유지하고, 모든 보조장치 및 주변장치를 가동하고 실시한다.
(2) 차량은 운전규정에 따라 충분히 정비되어야 하며, 모든 출입문, 창문 및 차량간의 통행문은 닫혀있어야 한다.
(3) 주행소음은 설계최고속도±5km/h(측정시간 동안의 평균속도는 설계최고속도 이상) 또는 운행선로에서의 운행최고속도±5km/h(측정시간 동안의 평균속도는 운행최고속도 이상)에서 평가되어야 한다. 다만, 실제소음 측정을 위한 운행여건이 어려운 경우 최고속도의 80% 이상의 속도에서 측정하고, 최고속도에서의 소음을 유럽연합(EU) 기술규정 (Commission Regulation No 1302/2014)의 6.2.2.3.2.1(EMU, DMUs, locomotives and coaches) 등을 참고하여 평가할 수 있다.

2) 주변환경조건
(1) 실내소음 평가 장소의 경우 소음, 바람, 소리 등과 같은 외부소음이 차내로 전달되어 차내소음수준에 영향을 미치지 않아야 하며, 실외소음 평가를 위한 기상조건으로는 온도, 습도, 바람 등으로 인해 소음측정에 대한 영향이 없도록 하며 우천 시는 측정을 하여서는 안 된다.
(2) 주행범의 상태는 양호한 상태이고, 이음배는 틀새가 없어야 하며, 배경소음과 대상소음의
차이는 10dB(A) 이상이어야 한다. 단, 차이가 10dB(A) 이하일 경우 열차의 상태 및 주변 환경조건에 대해 입증하여야 한다.

(3) 시험선로의 조건은 차량이 운행한 운행노선과 동등한 조건의 직선선로(최고운영속도가 가능한 곡선노선 혜용 가능함)에서 평가하며, 시험선로 중 자갈도상 및 콘크리트도상이 존재할 경우, 두 경우에 대해 평가하며, 터널이 존재하는 경우에는 터널구간 내에서 자갈도상 및 콘크리트 도상에 대해 각각 측정을 실시하여야 한다.

3.6.3.3 평가기준
1) 정차소음, 주행소음, 환경소음의 평가방법은 ISO 3095 등을 참고할 수 있다.
2) 실내소음은 신청자가 해당 철도차량에 대해 별도의 평가방법을 제시하며, ISO 3381, KS R 9143 등을 참고할 수 있다.
3) 환경소음의 평가방법은 소음진동설비시험기준(환경부고시), 소음진동관리법 시행규칙 제25조 (교통소음의관리기준)의 별표 12, 철도차량의 소음권고기준 및 검사방법 등에 관한 규정(환경부 고시) 등을 참고할 수 있다.
4) 소음측정 및 평가기준은 "환경분야 시험검사등에 관한 법률", EN 15461, EN 15610 등을 참고할 수 있다.

3.6.3.4 평가방법
1) 소음계는 피스턴폰(Pistonphone, Calibrator) 등의 표준음원에 따라 발생음의 오차 ±1dB 이내로 측정전후에 교정한다.
2) 실외측정의 경우 풍속이 2m/s이상일 때에는 반드시 마이크로폰에 방풍망을 부착하여야 하며, 풍속이 5m/s를 초과할 때에는 측정하여는 안 된다.
3) 소음계의 청감보정회로는 A특성을 사용하며, 동특성은 빠름(Fast)을 사용한다.
4) 배경소음측정은 각 시험항목당 5분 이상 3회 측정하여 소수점 첫째자리에서 반올림한 정수를 산술 평균한 값을 기록한다.
5) 모든 측정위치는 사진이 첨부되어야 하며, 평면도로서 정확히 명기되어야 한다.

3.6.4 구원운전
1) 열차가 스스로 운행이 불가능한 경우 다른 열차에 의하여 구원운전이 가능해야 하며, 구원운전을 위하여 별도의 장치가 필요한 경우 열차에 항상 보관되어야 한다.
2) 동일 형식의 차량에 의하여 구원운전이 이루어질 경우, 구원열차와 피구원열차의 제동명령이 동일하게 적용되어야 한다. 다만, 발주자가 중력·복합운전을 요구하는 경우에는 추진명령도 동일하게 적용하여야 한다.
3) 최대승객 하중조건의 1개 편성이 고장 등으로 인해 운행이 불가능한 경우, 동일조건의 정상편성이 노선 최대구배의 경사로에서 구원운전할 수 있어야 한다.

3.6.5 공기역학적 특성
도시철도차량(모노레일경전철)과 이를 구성하는 부품 및 구성품에 대한 공기역학적 특성은 발주자의 요구사항을 따라야 하며, 발주자의 요구사항이 없는 경우 다음을 참고할 수 있다.

3.6.5.1 선로주변 및 승강장에서의 허용 대기속도
1) 신청자는 최대길이의 열차가 개활지역 또는 승강장을 통과하는 동안 주행범 상면 0.2m 및 1.4m 높이, 궤도 중심으로부터 3.0m 인 지점에서 발생되는 최대 대기속도에 대해 안전성을 입증하여야
한다. 다만, 최고속도가 160km/h를 초과하는 철도차량에 대해서만 한정한다.
2) 해당 도시철도차량(모노레일경전철)에 의해 발생되는 대기속도에 대한 입증은 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 4.2.6.2(Aerodynamic effects), IEC 62498-1, EN 14067-1, EN 14067-2, EN 14067-4 등을 참고할 수 있다.

3.6.5.2 선로주변에서의 최대 압력변화
1) 신청자는 최대길이의 열차가 개활지역을 통과하는 동안 주행범 상면 높이 1.5m ~ 3m, 척도중심으로부터 2.5m 거리에서 발생되는 최대 압력변화(peak-to-peak)에 대해 안전성을 입증하여야 한다. 다만, 최고속도가 160km/h를 초과하는 철도차량에 대해서만 한정한다.
2) 해당 도시철도차량(모노레일경전철)에 의해 발생되는 압력변화에 대한 입증은 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 4.2.6.2(Aerodynamic effects), IEC 62498-1, EN 14067-1, EN 14067-2, EN 14067-4 등을 참고할 수 있다.

3.6.5.3 횡풍
1) 신청자는 열차가 주행하는 전체 속도범위에서 횡풍(cross wind)에 대한 안전성을 입증하여야 한다.
2) 해당 도시철도차량(모노레일경전철)의 횡풍에 대한 입증은 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 4.2.6.2(Aerodynamic effects), IEC 62498-1, EN 14067-2, EN 14067-6 등을 참고할 수 있다. 다만, 최고속도가 140km/h 이하인 철도차량에 대해서는 EN 14067-6에서의 단순화방법(simplified proof)으로 입증할 수 있다.
4. 주요장치별 기준

4.1 일반사항
1) 도시철도차량(교류전용, 직류전용, 직/교류겸용 모노레일경전철 모두 포함)을 구성하는 부품 또는 구성품은 다음 각 호의 목적에 적합하도록 설계 · 제작 · 사용되어야 한다.
 (1) 승객 및 화물운송의 안전을 확보할 수 있을 것이다.
 (2) 기기 취급과 유지보수가 용이한 방향으로 설계 · 제작되고 용도에 맞게 사용될 것이다.
 (3) 기후조건, 운행선로 또는 그 근처에 거주하거나 근무하는 자에 미치는 영향 등 철도차량의 운행환경과의 적합성을 고려할 것이다.
 (4) 시설물과의 간격 · 강도 · 하중이 궤도시설물 및 토목구조물과 조화를 이룰 것이다.
 (5) 기관사, 승무원, 철도차량관제업무종사자 및 철도신호시스템간의 상호작용이 원활할 것이다.
 (6) 전기차량은 접전과 이의 안전을 위하여 외부전원 공급 장치와의 적합성을 고려할 것이다.
 (7) 조립된 차량의 지붕은 누수가 되지 않고, 빗물이나 이물질 등이 고이지 않도록 하고 필요시 배수로가 준비되어야 한다.
 (8) 부품 또는 구성품은 방수, 효율, 소음, 중량, 강도, 강성, 열발산, 오염방지, 진동, 단열, 절연, 습도, 부식 등에 고려하여 설계되어야 한다.
 (9) 최대 궤도부담력(궤도에 가해지는 하중의 한계값들)
 (10) 축중
 (11) 최대 열차길이
 (12) 기구학적 한계
 (13) 최소 제동성능
 (14) 전기적 특성
 (15) 기계적 특성
 (16) 소음한계
 (17) 경량화
 (18) 인터페이스 한계
 (19) 공조 한계
 (20) 교통약자의 이동편의를 위한 요구조건
 (교통약자의 이동편의증진법 시행령 제11조 및 제12조, 동법 시행규칙 제2조1항 관련)
 (21) 최대 경사도(구배)
 (22) 유성보수

2) 도시철도차량(교류전용, 직류전용, 직/교류겸용 모노레일경전철 모두 포함)의 주요장치들의 기준을 정하는 기본적인 파라미터들은 다음과 같다:
 (1) 최대 궤도부담력(궤도에 가해지는 하중의 한계값들)
 (2) 축중
 (3) 최대 열차길이
 (4) 기구학적 한계
 (5) 최소 제동성능
 (6) 전기적 특성
 (7) 기계적 특성
 (8) 소음한계
 (9) 경량화
 (10) 인터페이스 한계
 (11) 공조 한계
 (12) 교통약자의 이동편의를 위한 요구조건
 (교통약자의 이동편의증진법 시행령 제11조 및 제12조, 동법 시행규칙 제2조1항 관련)
 (13) 최대 경사도(구배)
 (14) 집전장치의 구조 및 배열
 (15) 유지보수

3) 최소 성능 요건
 (1) 도시철도차량(모노레일경전철)은 운전노선에서 전반적인 운행관계를 통한 원활한 운행을 위해서 최소 성능수준을 보유해야 한다. 또한 최소 성능수준을 발성시키거나 유지하는데 기여하는 장치들은 장애 시에도 충분한 예비 및 백업(back-up) 용량을 갖춰야 한다.
 (2) 단일편성 또는 중량편성 시에도 최소 성능요건을 만족해야 한다.
4) 차량의 설계
 (1) 본 기술기준은 동력차와 부수차(제어차 포함) 등으로 구성된 중련편성과 단일편성 모두에 적용 가능하다.
 (2) 다음의 차량들로 구성된 편성이 허용된다.
 - 관절형(articulated) 및/또는 비관절형
 - 틸팅시스템의 수반 및/또는 비수반
 - 단층 및/또는 2층 갤실 포함
(3) 도시철도차량(모노레일경전철)의 가능한 모든 편성에서 양방향 운행이 보장되어야 한다.
5) 차량에 적용되는 모든 기기는 불연성재료를 사용하여 제작함을 원칙으로 한다. 또한 차량의 제조과정 및 향후 폐차시를 고려하여 유해한 공해물질이 함유되지 않고 가능한 한 재활용성이 우수한 재료를 사용해야 한다.
6) 차량의 모든 전기장치는 유지보수성이 뛰어나도록 가능한 한 모듈화하고 컴퓨터 설비는 장래 확장성이 충분히 고려되어야 한다.

4.2 차체 및 설비

4.2.1 구조체 설계
1) 구조체는 철도차량의 기대수명까지 안전하게 운행할 수 있도록 설계되어야 한다.
2) 구조체는 균열·훼손·부식 및 리벳 부분의 느슨해짐 또는 용접부의 균열이 있어선 안 된다.
3) 구조체를 구성하고 있는 판재류의 부식·노후 및 마모 등이 승객 등의 안전에 영향을 미치지 아니하여야 한다.
4) 최대하중시 차체의 처짐량은 대차중심간거리의 1/1000이하로하며, 이때 각종 출입문의 동작이 원활해야 한다.
5) 운전정비상태시 캐버량은 운전정비상태시부터 최대승객하중이 가해진 상태까지의 처짐량(Deflection)을 보상할 수 있도록 한다.
6) 구조체는 축 출입문과 통로출입문 등이 설치되는 경우 원활한 동작을 보장해야 한다.
7) 출입문 및 창문설치를 위한 개방부는 감도 및 강성의 보강 구조를 갖추도록 한다.
8) 차량기기 설치부위에는 충분한 강도를 유지할 수 있도록 하여야 한다.
9) 전투부는 최대 허용 압축응력을 지지할 수 있고, 충돌 시나리오에 따라 기관사를 보호할 수 있는 구조로 한다.

4.2.2 구조체 안전
1) 구조체는 차종별 하중조건에서 구조체에 발생하는 응력, 처짐량 등이 허용범위 이내이어야 하며 영구변형이 있어서는 아니된다.
2) 구조체는 해석적인 평가와 시험에 의한 평가로서 입증되어야 한다.
3) 해석적인 평가는 적합한 해석절차 및 기준이 적용되어야 하며, 유효요소해석과 같은 수치해석 프로그램 등이 이용될 수 있다.
4) 구조체의 설계 및 입증은 [별표 7]을 참고할 수 있다. 다만 신청자가 해당 도시철도차량(모노레일경전철)에 대해 별도의 기준을 제시하고, 차량 발주자가 동의하는 경우 검사기관 또는 전문기관은 이를 바탕으로 형식승인검사 또는 완성검사를 수행한다.
5) 구조체의 전복강도에 관한 세부기준은 [별표 8]을 참고할 수 있다. 다만 신청자가 해당 도시철도차량(모노레일경전철)에 대해 별도의 기준을 제시하고, 차량 발주자가 동의하는 경우 검
사기관 또는 전문기관은 이를 바탕으로 형식승인검사 또는 완성검사를 수행한다.

4.2.3 실내설비
1) 철도차량의 운행중 난방 등으로 인하여 뜨거워질 우려가 있는 실내설비의 표면 또는 장치는 승객에게 피해를 주지 아니하도록 설치되어야 한다.
2) 실내설비는 차량이 정지상태 또는 운행상태에서 승객들이 쉽고 안전하게 움직일 수 있도록 배 열하여야 하며, 노약자, 임산부, 장애자 등, 그리고 교통약자 보호자는 교통약자 이동권의 증진법에 따라 좌석 및 공간을 마련해야 한다.
3) 실내설비는 승객이 해당 설비와 충돌할 경우를 대비하여 각각 부분 및 날카로운 부분을 제거하는 등 손상이 최소화될 수 있는 구조이어야 한다.
4) 실내설비의 각종 장치는 철도차량 운행중 발생하는 허중을 견딜 수 있도록 안전하게 설치되어야 하며, 중요장치의 나사, 볼트, 너트 등의 체결부에는 진동과 충격에 의하여 느슨해지거나 풀림을 방지할 수 있는 장치가 갖추어져야 한다.
5) 철도차량의 각종 장치는 설치하거나 분리할 때 열차의 안전운행과 승객 및 탑승대기자의 신체의 안전에 위해를 미치지 아니하도록 설계되어야 한다.
6) 승객용 손잡이는 운행중 또는 급제동시 파손되지 아니하도록 충분한 강도를 가져야 한다.
7) 갤럭스에는 승객에게 필요한 충분한 수의 손잡이를 설치하여야 한다.
8) 승객용 출입구의 좌우측에는 서 있는 승객들이 쉽게 잡을 수 있도록 손잡이를 설치하여야 한다.
9) 장치의 내부 및 외부에는 승무원 및 승객이 차량의 번호를 식별할 수 있도록 차량번호판을 부착하여야 한다.
10) 실내설비의 설계 및 입증은 UIC 560, KS R 9145 등을 참고할 수 있다.
11) 교통약자 이동권의증진법 시행규칙 제2조제1항에 따른 "이동권의시설의 구조·재질 등에 관한 세부기준"을 만족하여야 한다.

4.2.4 리프팅
1) 차체를 들어올리는 위치에는 차량을 정상적으로 들어올릴 수 있도록 이를 명확히 표시하여야 한다.
2) 차체는 들어올림 하중과 정상적인 유지보수시 발생하는 하중을 손상없이 견딜 수 있는 구조이어야 한다.

4.2.5 장애물 제거기
지상구간을 운행하는 열차에는 궤도위에 있는 임의의 방해물을 제거하기 위한 장애물제거기를 설치하여야 한다. 다만 위험도특성 등을 통해 소형장애물 충돌 위험도가 허용 가능한 수준인 경우 장애물 제거기를 설치하지 않을 수 있다.

4.2.6 부식억제
1) 구조체는 기름류의 접촉이나 악천후에의 노출 등에 의하여 안전에 영향을 미치는 수준 이상으로 부식되지 아니하여야 한다.
2) 화학적 성질이 다른 금속간에 접촉이 되는 모든 구성품에는 각종 부식을 억제하기 위한 예방 조치를 강구하여야 한다.

4.2.7 출입문
1) 출입문 장치는 승객들이 가하는 하중과 운행중에 작용하는 하중을 견딜 수 있는 구조이어야
1) 출입문의 강도에 관한 필요한 세부기준은 [별표 9]를 참고할 수 있다. 다만 신청자가 해당 도시철도차량(모노레일경전철)에 대해 별도의 기준을 제시하고, 차량 발주자가 동의하는 경우 검사기관 또는 전문기관은 이를 바탕으로 형식승인검사 또는 완성검사를 수행한다.
2) 승객용 출입문에 고정창을 설치하는 경우에는 안전유리 또는 동등 이상의 재료가 사용되어야 한다.
3) 출입문의 근접하여 설치하는 설비는 상해의 위험을 최소화하도록 설계하여야 한다.
4) 차량에는 비상시 승객용 출입문을 외부에서 수동으로 열 수 있는 장치(이하 이 조에서 "외부 개방장치"라 한다)와 비상시 승객용 출입문을 차량 내부에서 수동으로 열 수 있는 장치(이하 이 조에서 "내부개방장치"라 한다)를 각각 구비하여야 한다.
5) 승객용 출입문의 가장자리는 사람의 손 또는 웃이 걸리지 아니하는 구조이어야 한다.
6) 승객용 출입문은 닫히지 아니하면 발차할 수 없는 구조이어야 한다.
7) 승객용 출입문은 비상시 승객탈출 등의 안전을 고려하여 차량 당 2개 이상이 설치되어야 하며, 유호폭과 유호높이는 비상탈출 등의 안전을 보장하여야 한다.
8) 승객용 출입문의 안쪽 옆벽에는 비상시 문을 여는 방법이 설명되어 있고 내부개방장치가 설치된 곳을 향하여 방향표시가 되어 있는 안내표지를 부착하여야 한다. 이 경우 안내표지와 내부 개방장치 사이에는 광고물 등을 부착하거나 설치하여서는 아니된다. 출입문의 내부개방장치의 설치에 관하여 필요한 세부기준은 [별표 9-2]를 참고할 수 있다.
9) 내부개방장치와 외부개방장치의 덮개에는 승객이 그 위치를 쉽게 알 수 있도록 위치표지를 각각 부착하여야 한다.
10) 제8항에 따른 안내표지와 제9항에 따른 위치표지는 축광식표지로 한다.
11) 승객용 출입문은 운전실 또는 관제실에서 제어가 가능하여야 하며 승객용 출입문이 닫히기 직전에 속도가 완화되고 장애물이 있을 경우 다시 열리는 구조이어야 한다.
12) 승객용 출입문은 운전실 또는 관제실에서 제어하는 경우 동시에 열리고 동시에 닫히는 구조이어야 한다.
13) 철도차량에는 출발 시 승객용 출입문을 닫기 전에 승객에게 안내할 수 있는 장치가 설치되어야 하며, 출입문의 개폐상태는 기관사 또는 관제실에 통보되어야 한다.
14) 사전, 출입문 접근계단 등의 설치 등 교통약자의 이동편의를 고려하여야 한다.
15) 출입문들은 승객들이 승강장의 존재 여부를 식별할 수 있도록 투명창을 갖추고 있어야 한다.
16) 승객용 출입문의 동작은 흐르며, 폭설, 폭염 등에 의한 영향을 받지 않도록 대책이 강구되어야 한다.
17) 출입문의 설계 및 입증에 관하여 신청자는 EN 14752, KS R 9246, KS R 9247 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증 할 수 있다.

4.2.8 출입문-스크린도어 연계
승강장에 승하차용 출입문이 설치된 경우 승객용 출입문은 승강장 승하차용 출입문과 상호 연계 하여 작동되어야 한다.

4.2.9 차량간 통로문
1) 철도차량간 통로문에는 내부와 외부에 개폐장치가 설치되어야 하며, 개폐장치가 작동할 때 통로문에 의하여 승객이 상해를 입지 아니하는 구조이어야 한다.
2) 철도차량간 통로문은 3.2.4 (차재안전) 규정에 의한 불연재료가 사용되어야 한다.
3) 철도차량간 통로문에 고정창을 설치하는 경우에는 안전유리 또는 동등 이상의 재료가 사용되
4) 철도차량간 통로문은 비상시 문을 열 수 있는 구조이어야 하며, 통로문 근처에 비상시 사용절차가 선명한 표시가 부착되어야 한다.
5) 차량간 통로구에는 비상시 장애자가 다른 사람의 도움으로 탈출할 수 있도록 충분한 너비를 확보하여야 한다.
6) 차량간 통로문을 설치하지 아니하는 경우, 차량간 통로구의 설비는 불연재료를 사용하여야 한다.
 다만, 불연재료를 사용할 수 없는 경우에는 3.2.4.3(화재예방)의 화재기준을 만족하여야 한다.
7) 차량간 통로문의 설계 및 입증은 EN 14752 등을 참고할 수 있다.

4.2.10 냉난방환기장치
1) 객실에는 환기장치와 냉난방장치가 설치되어야 한다.
2) 냉방장치는 객실별로 자동온도제어가 가능해야 하고, 동시 또는 개별운전이 가능해야 한다.
 개별운전의 경우에는 "환기", "반냉방", "전냉방" 등 3가지 이상의 모드로 제어될 수 있어야 한다.
3) 난방장치는 동시 또는 개별 운전할 수 있고, 3가지 이상의 모드로 제어될 수 있어야 한다.
4) 냉난방환기장치가 파손되는 경우 유해물질이 객실내부로 유입되지 아니하는 구조이어야 한다.
5) 승객과 승무원들이 탑승하고 있는 차량 구역 내부에 제공되는 공기의 양과 질은 외부 대기의 질로부터 비롯되는 것에 추가하여 승객이나 승무원들의 건강에 어떤 위험도 전개되지 않는 것이어야 한다.
6) 환기장치는 C02 및 미세먼지 등 실내공기질의 수준을 모든 정상 운행 조건에서 "실내공기질 관리를 위한 대중교통차량의 제작-운행 관리지침(환경부고시)"을 만족도록 설계될 것을 권고한다.
7) 냉난방환기장치의 설계 및 입증에 관하여 신청자는 EN 14813-1, EN 14813-2, EN 14750-1, EN 14750-2, KS R 9198, KS R 9200, UIC 553, UIC 553-1 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증할 수 있다.

4.2.11 등구류
1) 철도차량내부에는 비상시 승객 및 승무원이 안전하게 철도차량 밖으로 대피할 수 있도록 객실·비상출구 주변의 출입문 및 그 밖에 대피에 필요한 곳에는 비상조명등이 설치되어야 하며, EN 13272 등을 참고할 수 있다.
2) 비상조명등의 전기회로는 이중화구조로 설계되어야 하며 축전지 전원에 의하여 비상시에도 30분 이상 작동되어야 한다.
3) 비상조명등은 승객 및 승무원이 정상적으로 대피 또는 업무를 수행할 수 있는 정도의 밝기를 가지여야 하며, 차량의 실내등 및 비상대피등으로 바닥을 기준으로 조명 밝기를 측정한 경우 10lux 이상의 밝기로 균일하게 유지되어야 한다.
4) 전조등은 발주자의 요구사항으로 결정되는 것을 원칙으로 하며, 신청자는 다음 각 호를 참고할 수 있다.
 (1) 2개의 백색 전조등이 열차의 앞쪽 끝부분에 갖춰져야 하며, 이들은 주행범 위로 동일한 높이에서 수평 축선 상에 있어야 한다.
 (2) 전조등은 야간에 전방의 식별을 위한 충분한 조도, 교행하는 열차 기관사의 눈부심 방지 등을 고려하여 설치되어야 한다.
5) 후미등은 발주자의 요구사항으로 결정되는 것을 원칙으로 하며, 신청자는 다음을 참고할 수
있다. 2개 이상의 후미등이 열차의 후미에 장착되어야 하며, 이들은 주행범 위로 동일한 높이에서 수평 축선 상에 있어야 한다.
6) 기관사는 정상적인 운전위치에서 전조등을 제어할 수 있어야 한다.

4.2.12 의자 및 선반
1) 의자틀 및 선반을 고정시키는 부분은 승객·수화물 등의 하중에 의하여 파손되거나 변형되지 아니하여야 하며, 열차운행상태에서 발생하는 진동 등에 견딜 수 있는 충분한 강도를 가져야 한다.
2) 객실의 의자는 승객의 안전을 위하여 주행하거나 충돌사고가 발생한 경우에 충격을 흡수할 수 있는 구조로 설계되어야 한다.
4) 객실의 의자 및 선반은 승객의 안전을 위하여 주행하거나 충돌사고가 발생한 경우에 충격을 흡수할 수 있는 구조로 설계되어야 한다.
5) 제1항 및 제2항에 따른 의자 및 선반의 안전에 관한 세부기준은 [별표 10]을 참고할 수 있다. 다만 신청자가 해당 도시철도차량(모노레일경전철)에 대해 별도의 기준을 제시하고, 차량 발주자가 동의하는 경우 검사기관 또는 전문기관은 이를 바탕으로 형식승인검사 또는 완성검사를 수행한다.

4.2.13 전면유리창
1) 운전실 전면유리창에 사용된 안전유리의 형식과 운전실의 모든 온열식 유리들(성에를 막기 위해 가열되는 유리들)은 신호의 색상을 변경시켜서는 안 되며, 그들의 품질은, 구멍이 뚫리거나 금이 간 때에도, 체 위치를 유지해야 하며, 열차가 주행을 계속할 수 있도록 승무원 보호와 충분한 시계 확보를 할 수 있어야 한다.
2) 운전실 전면유리창은 충돌 사고 발생시에도 탈락이 되지 않도록 그 가장자리를 따라 견고히 고정되어야 한다.
3) 운전실의 전면유리창은 접합유리가 사용되어야 하고, 열차의 최대운행속도에서 동압 등에 의한 변형 등이 발생하면 안된다. 또한, 운행중 부딪치는 물체 등에 의하여 관통되지 아니하도록 충분한 강도를 가져야 한다.
4) 운전실의 전면유리창은 기관사가 운전에 적합한 시야를 확보하도록 설치되어야 하며, 먼지·비·눈 등 운전에 방해되는 물질을 제거하는 장치 및 햇빛 또는 전조등에 의한 기관사의 눈부심을 막기 위한 장치 또는 기능이 포함되어야 한다.

4.2.14 측면유리창 및 기타 유리창
1) 창문의 재료는 안전유리 또는 동등이상의 재료가 사용되어야 하며 열차의 최고속도에서 내·외부 압력변화 및 온도변화 등을 견딜 수 있는 충분한 강도 및 누수방지가 유지되어야 한다.
2) 개폐식 창문을 적용하는 경우 승객이 몸의 일부를 내밀기 어려운 구조이어야 한다.
4.2.15 운전실 및 비상탈출구
1) 운전실 내부(또는 무인운전방식 차량의 운전대)의 장비 또는 장치는 급격한 가감속시 모서리나 돌출부에 기관사가 다치지 않도록 설치하여야 한다.
2) 운전실과 객실사이에는 운전실 안쪽으로 열 수 있고 잠금장치가 설치된 칸막이문을 설치하여야 한다. 다만 무인운전방식 차량에는 적용하지 않을 수 있다.
3) 운전실은 기관사가 정차 상태인 열차의 각 측면의 창문을 통해서 후방 시야를 확보할 수 있도록 설계되어야 하며 이와 동시에 비상제동을 작동할 수 있는 상태를 유지해야 한다. 다만 무인운전 경전철에는 적용하지 않을 수 있다.
4) 운전실에는 비상시를 대비하여 1개 이상의 비상탈출구가 있어야 하며, 기관사 등이 쉽게 탈출할 수 있는 구조이어야 한다. 다만, 비상대피로가 전 노선에 설치되어 있는 구간을 운행하는 무인운전 경전철의 운전실에는 비상탈출구를 설치하지 아니할 수 있다.
5) 운전실이 별도로 설치된 경우 운전실에는 기관사를 위한 적절한 조명설비가 설치되어야 하며, 운전환경 유지를 위해 냉·난방이 가능해야 한다. 냉난방환기는 냉난방환기장치(4.2.10)의 제7)에 따른다.
6) 운전실이 별도로 설치된 경우 운전실내의 CO₂ 및 미세먼지 등 실내공기질 수준은 모든 정상 운행 조건에서 "실내공기질 관리를 위한 대중교통차량의 제작·운행 관리지침(환경부고시)"을 만족하여야 한다. 한정장치는 기관사가 적절한 운전 위치에서 머리와 어깨로 과도한 공기흐름을 유발하지 않아야 한다.
7) 열차운전 및 제도장치 등 안전관련 장치가 고장이 난 경우에는 시각 또는 청각신호가 기관사 또는 관제실에 통보하여야 한다.

4.2.16 승객용 비상 출구
1) 승객용 비상 출구는 발주자의 요구사항으로 결정되는 것을 원칙으로 하며, 신청자는 다음 각호를 참고할 수 있다.
 (1) 각 승객용 창구의 간격은 각 차량에 16 m 미만이어야 한다.
 (2) 40 명 이하의 승객들을 수용하는 각 차량에는 최소한 2개의 비상 출구가 있어야 한다. 40명을 초과하는 승객들을 수용하는 각 차량에는 3개 이상의 비상 출구가 있어야 한다. 모든 비상출구를 전적으로 차량의 한 쪽 면에 배치하는 것은 허용되지 않는다.
 (3) 비상용 출구를 통과하는 개구부의 최소 차수는 700 mm x 550 mm 이어야 한다. 이 구역 내에 찰직을 배치하는 것은 허용된다.
2) 외부 출입구는 최적선적으로 비상 출구로 사용되어야 한다. 만약 이것이 불가능하다면 다음의 설비들을 별도 또는 조합하여 비상출구로 이용할 수 있어야 한다.
 (1) 지정된 창문 : 창문이나 유리창을 방출하거나, 유리를 파쇄하여 이용.
 (2) 객실 출입문 : 출입문을 신속하게 제거하거나, 유리를 파쇄하여 이용.
 (3) 외부 출입문 : 이들 방출하거나 유리를 파쇄하여 이용.
3) 비상 출구는 적절한 표지 수단을 통해 승객들과 구조 팀들에게 명확히 식별되어야 한다.
4) 열차는 정거장에 달지 않았을 때 승객들이 출입문을 통해 대피할 수 있도록 대피이 제시되어야 한다.

4.2.17 경적
1) 경적의 작동은 발주자의 요구사항으로 결정되는 것을 원칙으로 하며, 신청자는 다음 각 호를 참고하여 선택할 수 있다.
철도차량기술기준
KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(1) 열차는 최소 2가지 이상의 구분되는 음색을 갖는 경적을 구비해야 한다. 경적은 열차로부터 온라인으로 인식될 수 있어야 하며, 도로교통, 공장시설 등의 경보와 유사해서는 안 된다.
(2) 개별적(하나의 음색으로서 동시에 소리를 내도록 설계된 경우 하나의 그룹)으로 소리를 내는 각각의 경적은 A 또는 C 기준 음압으로 입증되어야 한다.
(3) 작동시 최대 값이 철도차량의 전방 30m에서 100dB 이상의 음향을 갖춘 경적이 설치되어야 한다.

2) 경적 및 제어장치는 파편, 먼지, 눈, 우박이나 새들과 같이 날아드는 물체와 충돌하여 막히는 것으로부터 보호되어야 한다.

3) 운전실에서 기관사가 용이하게 조작할 수 있어야 한다.

4.3 주행장치

4.3.1 주행장치 설계
1) 주행장치는 열차를 운행할 때 주행안전성이 확보될 수 있도록 3.2.2(주행안전) 규정에 의한 주행안전기준에 적합하도록 설계되어야 한다.
2) 주행장치에는 비·눈 및 세척제 등에 의한 오작동 및 부식을 방지하도록 보호대책이 강구되어야 한다.
3) 주행장치와 그 구성품에는 유해물질의 사용을 억제하고, 운행중 유해물질이 대기에 방출되지 아니하여야 한다.

4.3.2 주행장치를
1) 신청자는 해당 도시철도차량(모노레일경전철)의 주행장치들에 대한 강도기준을 제시하고, 설계된 주행장치들의 안전을 입증하여야 한다.
2) 주행장치들의 강도에 대한 입증은 해석적인 강도평가, 정하중시험, 피로시험 및 선로주행시험을 통한 평가 등 4가지 방법으로 입증되어야 한다.
3) 해석적인 강도평가는 적합한 해석절차 및 기준이 적용되어야 하며, 유한요소해석과 같은 수치해석프로그램 및 피로수명평가 코드 등이 이용될 수 있다.
4) 선로주행시험은 차량의 운행 구간에서 수행되어야 하며 적합한 수명평가 절차와 기준에 따라 입증되어야 한다. 다만, 선로주행시험은 복합소재 등 신소재를 적용한 경우나 국내에서 유사한 사례가 없는 새로운 설계특성을 갖는 대차에 대해서만 시행한다.
5) 주행장치들은 바람과 관측을 쉽게 하기 위하여 축정기준이 되는 3축 좌표를 표시하여야 한다.
6) 가로림을 보조 공기압으로 이용하는 경우, 내부를 방충처리하고 기밀을 유지하도록 한다.
7) 주행장치들은 용접 후 주요부위의 표면 및 내부는 자문탐상검사, 초음파검사, 방사선검사 등 의 바파괴 검사를 시행하여 정해진 기준을 초과하는 결함이 없어야 한다.
8) 주행장치들의 설계 및 입증에 관하여 신청자는 EN 13749, EN 15085-1, EN 15085-2, EN
철도차량기술기준

KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

15085-3, EN 15085-4, EN 15085-5, EN 13979-1, UIC 615-4, KS R 9224, KS R 9210 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증 할 수 있다.

4.3.3 차축 및 주행륜
1) 철도차량 차축과 주행륜은 상호간의 탄성력에 의한 결합 구조 또는 베어링으로 조립되어 차축과 주행룬간의 회전운동을 허용하는 구조(독립차륜)로서 사용중 분리되지 아니하여야 한다.
2) 고무타이어로 된 주행륜은 손상시 차량의 안전확보를 위해 주행륜 내부에 안전차륜 또는 그와 상당하는 장치를 설치하여야 한다.
3) 주행륜 내부의 충전가스는 압력변화가 적고, 주행륜 구성품과의 부식을 방지할 수 있는 구조로 한다.
4) 안내륜은 차량 주행시 열차의 주행안정성 확보를 위한 충분한 강도, 내마모성, 유지보수성 및 운용 효율성 등을 고려하여 설계되어야 한다.

4.3.4 차축조립장치
1) 차축조립장치는 운행중 분리되지 아니하는 구조이어야 한다.
2) 베어링은 최고속도와 설계최대하중에 적합한 성능을 구비하여야 한다.
3) 차축조립장치 이외의 장치가 차축의 끝부분에 설치된 경우에는 그 고장시에도 베어링의 작동에 영향을 미치지 아니하여야 한다.
4) 차축조립장치와 주행장치들을 연결하는 구성품은 주행중 분리가 되지 않도록 충분한 기계적 강도를 가지야 한다.
5) 차축조립장치에 주행륜을 취부 할 수 있는 허부(hub)장치는 회전 운동이 가능하여야 하며, 그 리이스(Grease) 누출 및 오염물질 침입방지를 최소화 할 수 있는 구조로 한다.

4.3.5 현가장치
1) 현가장치는 최고속도와 설계최대하중에 적합한 성능을 가지야 하며, 운행중 절단 또는 파손시 설치된 위치로부터 덜어지지 않는 구조이어야 한다.
2) 현가장치는 철도차량의 탈선·전복 등을 고려하고 안전운행을 보장하도록 설계되어야 한다.
3) 공기스프링형식의 현가장치는 승객 등에 의한 하중이 변환하더라도 철도차량의 대차프레임과 차체간의 높이를 일정하게 유지할 수 있어야 하며, 운행중 한쪽의 공기스프링이 파손될 경우 자동적으로 좌·우측의 차체 바닥면의 높이가 조정되는 보조장치 등을 갖추어야 한다.
4) 현가장치의 설계 및 입증에 관하여 신청자는 KS R 9243, KS R 9234, KS R 9235, KS R 9207 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증 할 수 있다.

4.3.6 차체지지장치
1) 주행장치와 차체를 연결하여 지지하는 장치는 운행중 주행장치와 차체의 연결이 분리되지 아니하는 구조이어야 하고, 영구변형이 발생하지 않아야 한다.
2) 차체지지장치는 운행중 간격을 전달하는데 있어 전동 및 충격을 완화시킬 수 있는 구조이어야 한다.
3) 차체지지장치는 수평, 수직 및 대차 회전시 필요한 운동에 제한이 없도록 하고, 필요한 경우 이상상승시 차체의 상승력을 지지하는 이상상승방지장치를 설치한다.
4) 차체지지장치는 주행장치와 차체의 결합과 분리가 용이하여야 한다.
5) 도시철도차량(모노레일경전철)의 차체지지장치 강도에 대한 세부기준은 [별표 13]을 참고할 수 있다.
4.3.7 구동장치
1) 구동장치는 운행중 설치볼트가 파손된 경우에도 주행장치에서 분리되지 아니하도록 설치하여야 한다.
2) 구동장치에는 기어함 내부의 오일상태를 확인할 수 있는 장치를 설치하여야 한다.
3) 구동장치의 설계 및 입증은 KS R 9239 등을 참고할 수 있다.

4.4 제동장치

4.4.1 제동장치 설계
1) 한 제어단위의 제동장치가 고장난 경우에도 다른 제어단위의 제동장치에 의하여 열차의 제동이 가능하여야 하며, 공기제동을 사용하는 경우 주공기배관은 열차를 관통하는 연속적인 배관이어야 한다.
2) 고온 및 고압부와 같이 작동 또는 접근에 주의를 요하는 장치·기기 및 부품에는 사람이 보기에 쉬운 위치에 주의표시 또는 보호장치가 있어야 한다.
3) 상용 및 비상해체동시 모든 제동작용은 차량의 중량에 비례한 제동력을 가감하는 에용초제어기능을 갖도록 한다.
4) 상용 및 비상해체동장치는 역행신호와 인터록킹되고 타신후에 대해 우선 순위가 되도록 하며 응하중장치의 파손 및 고장시에도 기관사가 직각이나 만차시보다 크게 되도록 한다.
5) 좌석을 위치 할 수 있는 선로의 최대구배에서도 공차상태로 열차를 지속적으로 정차할 수 있는 주차제동기를 갖추어야 하며, 별도의 장비 없이 제동을 유지할 수 있어야 한다.
6) 정상운전조건하에서 요구되는 열차의 비상제동거리에 대해 신청자는 운행도선에서의 최고운영속도, 감속도 등을 고려하여 안전운행을 확보하여야 하며, EN 13452-1 등 적합한 표준규격을 참고할 수 있다.
7) 회생제동에 의하여 만들어지는 전력은 입력전압에 따라 조절되어야 하며, 부족한 제동력은 기초제동장치에 의한 보상으로 승차감의 저하 없이 제동성능이 유지되어야 한다.
8) 제동장치는 차량이 운행중에 상실한 경우에 동일노선을 운행하는 다른 열차 또는 열차가 동일노선을 운행하는 차량에 의하여 구원제동이 가능하여야 하며, 구원제동시에도 정상제동 및 비상제동이 가능하여야 한다. 다만, 제동장치가 한정 불능인 경우로서 발주자가 정한 속도로 대피선 또는 주박선 등으로 대피시킬 때에는 예외로 한다.
9) 회생제동에 의하여 만들어지는 전력은 입력전압에 따라 조절되어야 하며, 부족한 제동력은 기초제동장치에 의한 보상으로 승차감의 저하 없이 제동장성능이 유지되어야 한다.
10) 제동장치는 감속도를 일정하게 유지할 수 있어야 하며 정상적인 제동 시에는 승객에게 불쾌감을 주는 충격·소음 및 진동이 최소화되어야 한다.
11) 제동장치는 활주방지기능을 갖추어야 하며, 활주방지기능이 제동기능에 영향을 주어서는 아니된다. 다만, 고무차륜을 사용하는 건전철의 경우 제동거리 등에 영향이 없는 경우에 한하여 적용하지 않을 수 있다.
12) 철도차량의 제동압력 등의 비정상적인 감압 시 비상제동이 체결될 수 있어야 한다.
13) 운전실에는 기관사가 제동장치를 제어할 수 있도록 주제동레버를 갖추어야 하며, 주제동레버가 고장이 나는 경우에 대비하여 제동체결의 보조적인 수단으로 보조제동레버 또는 스위치를 갖추어야 한다.
14) 제동제어장치는 승객이나 기관사의 오조작에 의한 손상 및 작동을 방지할 수 있는 구조이어
야 한다.
15) 제동제어장치의 전원은 다른 장치의 전원과 분리되어야 하며, 전력공급선의 전원이 단절되는 경우에도 제어가 가능하여야 한다.
16) 추진제어장치 등에 의하여 발생되는 전자기방사로 차량의 안전 및 주변장비에 유해한 영향을 주지 아니하도록 차폐되거나 필터 또는 제어기법 등에 의하여 억제되어야 한다.

4.4.2 제동 요구사항
1) 도시철도차량(모노레일경전철)에는 상용제동, 비상제동, 주차제동의 기능을 갖추어야 한다. 그 밖에 보안제동, 정차제동 등은 발주자의 요구사항에 따른다.
2) 제동성능의 입증은 상용제동, 비상제동 등 최소 2가지 모드에 대해 수행되어야 한다.
 (1) 제동성능은 평탄선로에서 입증되어야 한다. 제동성능은 신규차륜에 대해 수행되어야 하며, 요구하는 차륜-궤도 접촉 수준의 계산을 포함해야 한다.
 (2) 제동성능의 입증은 설계적합성검사 또는 형식동등성검사 단계에서 수행되어야 하며, 형식 시험 및 주행시험의 결과들과 비교되어 각종변수들이 수정되어야 한다. 시험결과와 일치하는 최종적인 제동성능 입증결과가 기술문서에 수록되어야 한다.
3) 신청자는 제동장치가 제동 에너지의 소산을 견딜 수 있도록 설계되었음을 입증하여야 한다.
 (1) 계산은 최대하중, 평탄선로에서 최고속도로 2회 연속 비상제동을 수행하는 시나리오를 포함하여야 한다. 이때 최고속도까지 열차를 가속하는 데 필요한 시간을 고려한다.
 (2) 제동 열 운량과 관련하여 제동장치가 설계된 운영조건(열차길이, 운행속도 등)과 선로조건(경사도 등)에 대한 계산이 고려되어야 한다.
4) 제동장치의 오작동이나 결함이 발생한 경우에는 도시철도 차량 간에 연결되어 있는 배관·선열 및 연결장치 등의 고장이나 승객에게 상해를 입힐 수 있는 정도의 충격이 발생되지 아니하여야 한다.
5) 제동장치의 각 부품은 운행의 안전에 지장을 주는 흡·균열 또는 기공 등의 결함이 없어야 한다.
6) 제동장치에 문제가 발생하였거나 전력공급에 장애가 발생한 경우 최대하중이 실린 열차(에의 적 하중과 하에서의 설계하중)는 마찰제동만을 이용하여 최소한 2시간 동안 운영노선의 최대경사로에서 정차 상태를 유지하는 것이 가능해야 한다.
7) 제동장치는 정상제동시 제동작용이 급격히 증가되거나 감소되지 아니하는 구조이어야 한다.
8) 모든 차량들은 제동차단 수단 및 제동상태를 표시해야 하고, 제동장치 진단 시스템을 갖추어야 한다.
9) 제동장치는 서리, 흙, 폭설, 폭염, 먼지 등에 의한 오염물질이 제동제어이나 안전작동에 영향을 주지 아니하는 구조이어야 하고, 동파할 경우 열차의 안전운행에 지장을 주는 장치에는 전열기 등 보호장치를 구비하여야 한다.
10) 제동장치의 설계 및 입증에 관하여 신청자는 EN 14531-1, EN 14531-6, KS C IEC 61133, EN 15663, UIC 544-1, UIC 544-2, EN 14198, EN 15179, EN 15220-1, EN 15355, EN 15595, EN 15611, EN 15612, EN 15625, KS C IEC 62279, UIC 540, UIC 541-5, IEC 61508, KS R 9225, EN13452-1, EN13452-2 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구사항을 입증할 수 있다.
4.4.3 비상제동
1) 비상제동은 전기지령선이 단선될 경우 전 차량에 비상제동이 자동으로 작동하는 폐일-세이프 기능이 적용되어야 한다.
2) 기관사 또는 열차제어장치의 비상제동지령, 주제동압력 부족, 열차분리 및 제동제어회로 이상 등과 같은 비정상적인 상황에서는 비상제동기능이 자동으로 작동되어야 한다.
3) 열차에는 정상적인 제동작용 외에 긴급상황시에도 안전하게 작동할 수 있는 비상제 동기능이 구비되어야 한다.
4) 비상제동의 성능입증은 다음과 같은 모든 모드에서 수행되어야 한다.
 (1) 정상조건: 제동장치에 어떠한 장애가 없고, 마찰제동에 사용된 마찰계수(건조조건)가 공
 칭값을 사용하는 경우
 (2) 비정상조건(고장): 단일 고장으로 비상제동 정지거리의 계산이 수행되어야 한다. (단, 단
 일 고장에 대한 정의는 발주자의 제안에 따른다.)
 (3) 환경저하조건(degraded condition): 족-주행범 점착계수 한계값을 고려하여 계산이 수행
 되어야 한다. (단, 점착계수 한계값은 발주자의 제안값을 따른다.)
5) 비상제동의 성능입증은 다음과 같은 3가지 하중조건들에 대해 수행되어야 한다.
 (1) 공차하중(W0) 또는 정비하중(W1)
 (2) 만차하중(W2) 또는 초과하중(W3)
6) 비상제동 시에는 전기제동과 기계제동의 유기적인 제동력 분배 또는 기계제동만을 이용하여
 열차가 안전하게 정지될 수 있어야 한다.
7) 비상제동의 사용이 모든 추진력을 자동적으로 차단해야 한다.
8) 비상제동은 기관사가 정상적인 운전위치에서 항상 작동할 수 있어야 한다.
9) 기관사가 운전위치에서 간단하게 비상제동을 동작시킬 수 있는 장치가 2가지 이상 구비되어야
 한다. 이들 장치 중에서 최소 1개는 빨간색 버튼이어야 한다. 다만, 무인운전방식 경전철의
 경우에는 1가지 장치만을 설치하는 것이 가능하다.
10) 비상제동은 기계적 자기 잡금 기능이 있어야 하며, 외해하기 위해서는 의도적인 작동에 의해
 서만 가능해야 한다.
11) 전원공급의 고장 또는 열차운행에 지장을 줄 수 있는 통신상의 장애가 발생한 경우에도 비상
 제동작용이 이루어져야 한다.

4.4.4 상용제동
1) 상용제동의 성능입증은 다음의 조건에서 EN 13452-1, EN 13452-2 등을 참고하여 수행되어야 한다.
 (1) 고장이 없는 정상조건인 제동장치
 (2) 최고속도
 (3) 정상하중에서의 설계하중 조건
 (4) 공칭 마찰계수
2) 최대 상용제동 성능 : 상용제동이 비상제동 보다 높은 제동성능 용량을 가지는 경우, 비상제동보다 낮은 수준에서 최대 상용제동 성능을 제한하는 것이 가능해야 한다.

4.4.5 주차제동
1) 주차제동이 그 자체로 성능을 발휘할 수 없는 경우 별도의 장비(예: 차륜 고임목)를 통해 주차
 제동을 유지할 수 있어야 한다. 이 경우 보조수단은 차량에 탑재되어 이용 가능해야 한다.
2) 주차제동의 성능입증에 관하여 신청자는 EN 13452-1, EN 13452-2 등을 참고하여 적합하다고
판단되는 규격으로 기술기준의 요구 사항을 입증할 수 있다.
3) 어떤 상황에서도 정차상태에서 주차제동이 가능해야 한다.
4) 주차 제동은 차량의 전원이 꺼지고, 제동압력(주공기압력 또는 유압 등)이 저하되면 자동으로 작동되어야 한다.

4.4.6 기초제동
1) 제동마찰재는 불꽃·먼지 및 가스 등의 발생이 적은 재질이어야 하며, 석면 등 유해물질이 포함되어서는 아니된다. 다만, 유해물질 별로 허용기준이 있는 경우에는 이에 따른다.
2) 제동레버 등과 같이 힘을 지탱하거나 전달하는 부품은 충분한 강도를 가져야 한다.
3) 열차의 전차량 제동후 최종차량의 제동실린더의 압력이 98 kPa(1kgf/cm²)이 되는 순간까지의 제동 풀림시간은 8초 이내이어야 한다. 다만, 유압제동의 경우에는 적용하지 않을 수 있다.
4) 열차의 비상제동시 제동실린더로 공기가 유입되는 순간부터 제동실린더의 압력이 최대치의 95%가 되는 순간까지의 제동충기시간은 5초 이내이어야 한다. 다만, 유압제동의 경우에는 적용하지 않을 수 있다.
5) 기초제동장치의 설계 및 입증에 관하여 신청자는 EN 13452-1, EN 13452-2, KS R 9237, KS R 9241 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을 입증할 수 있다.

4.4.7 압축공기 공급장치
1) 주공기압축기의 설치부분은 충분한 강도를 가져야 하며, 진동을 흡수할 수 있는 구조이어야 한다.
2) 주공기압축기에 출구 등 과중한 압력이 발생되는 위치에는 안전밸브 등을 설치하여야 하며, 압력의 측정이 필요한 위치에는 압력측정구 등이 설치되어야 한다.
3) 주공기압축기는 열차 편성당 1대가 고장난 경우에도 정상으로 작동하는 주공기압축기에 의하여 열차 운행에 필요한 공기를 공급할 수 있도록 설계하여야 한다.
4) 제동장치에 사용되는 압축공기 및 유체는 외부에서 유입되거나 내부에서 발생되는 물 또는 기타 오염물질 등으로부터 영향을 받지 아니하도록 여과장치 등을 갖추어 보호하여야 한다.
5) 정격압력 이내에서의 공기압력의 증가 또는 감소가 제동작용에 지장을 주어서는 아니된다.
6) 압축공기는 안전작동에 필요한 온도 및 습도가 유지되도록 하여야 한다.
7) KS R 9225, KS R 9236, KS R 9244, KS R 9245 등을 참고할 수 있다.
8) 압축공기를 사용하지 않는 유압제동을 적용하는 도시철도차량(모노레일경전철)은 제1항 내지 제7항을 적용하지 않을 수 있다.

4.4.8 활주방지
1) 제동장치는 활주방지기능을 갖추어야 한다. 다만, 고무차륜을 사용하는 경전철의 경우 제동거리 등에 영향이 없는 경우에 한하여 적용하지 않을 수 있다.
2) 활주방지가 적용되는 경우 활주방지제어의 고장시 일정시간이 지나면 무효화시켜서 지령값보다 적은 견인력 및 제동력이 제한되지 않도록 바이패스(By-Pass) 기능을 갖추도록 한다.
3) 활주방지가 적용되는 경우 KS R 9249 등을 참고할 수 있다.
4.5 추진장치

4.5.1 설계 요구사항
1) 도시철도차량(모노레일경전철)의 견인력 특성은 입증되어야 하며, 이때 주행저항은 정상하중 하에서의 설계중량으로 한다. 또한 철도차량의 견인력 특성 및 주행저항은 기술문서로 기록되어야 한다.
2) 최고속도는 평탄한 선로 상에서 정상하중 하에서의 설계중량으로 입증되어야 한다.
3) 철도차량 설계시 사용된 전압 및 주파수는 문서화되어야 한다.
4) 2 MW 이상의 전기장치들은 전류제한 기능이 갖춰져야 한다.
5) 전기장치들은 전압과 관련하여 정상작동 조건 내에서 자동 전류 조절 장치를 장착해야 한다.
6) 최대전류(정격 전류)는 문서화되어 기록되어야 한다.
7) 직류전력공급시스템에서는 접전장치 탑 정차 상태의 최대 전류가 입증되고 측정에 의하여 검증되어야 한다.
8) 전기장치는 전차선 상에서 수용할 수 없는 과전압 등 고주파와 동직효과 등의 현상들을 유발시켜서는 안 된다.

4.5.2 인버터/컨버터
1) 전원 차단시 60V 이상의 충전상태가 5초 이상 유지되는 부품은 사람이 보기에 쉬운 위치에 주의 표시를 하여야 한다.
2) 인버터의 부품중 외부로부터 발생되는 정전기에 의하여 손상될 수 있는 부품은 점검 · 교체 또는 보관시 정전기에 의한 손상으로부터 보호되어야 한다.
3) 인버터는 고장이 발생한 경우에 전기적으로 분리할 수 있도록 한다.
4) 역행 및 제동 시 차량의 하중을 보상하여 성능이 일정하게 유지되도록 하여야 하며, 공전활주 검지 및 제정착제어를 통하여 차륜 및 궤도의 손상을 방지하여야 한다.
5) 회생제동 시 전차선의 허용범위 내에서 회생전력이 최대가 되도록 제어하여야 한다.
6) 교류구간에서 역행 및 회생을 하는 경우 역률은 0.95 이상으로 제어하여야 한다.

4.5.3 견인전동기
1) 견인전동기는 운행중 설치볼트가 파손된 경우에도 주행장치에서 분리되지 아니하도록 설치하여야 한다.
2) 견인전동기와 그 축에 설치되는 베어링에는 축전류 및 차체로부터의 누설전류 등에 대한 보호 방안이 강구되어야 한다.
3) 견인전동기의 전기배선은 물체의 충격 및 차량의 전동에 견딜 수 있도록 내마모성 및 유연성을 가지야 하며, 차체와의 최대상대변위시 파도한 구부러짐이 없도록 이를 설치하여야 한다.
4) 견인전동기의 냉각공기 흡입구는 견인전동기 내부에 손상을 야기할 수 있는 이물질의 침투를 방지할 수 있는 구조이어야 한다.
5) KS C IEC 60349-1, KS C IEC 60349-2, KS C IEC 60349-3, KS C IEC 60850, KS C IEC 60638 등
을 참고할 수 있다.

4.5.4 보호기능
1) 추진제어장치는 이상전압 또는 고장시의 과도전류에 대하여 적절한 보호기능을 가져야 한다.
2) 추진제어장치에 발생한 고장은 종합제어장치 등에 기록 및 표시되어야 한다.
3) 추진제어장치는 일시적인 현상에 의한 고장조건이 사라지고 안전한 상태가 확인된 경우 초기
화기능에 의하여 정상적인 동작이 회복될 수 있어야 한다.

4.5.5 집전장치
1) 집전장치로 운행되는 전기차량은 최고속도로 주행하는 경우에도 집전장치 등에 이상이 없어야 하며, 견인 및 제동 시에도 차량의 운행에 필요한 전류가 집전될 수 있어야 한다.
2) 집전장치는 기관사가 운전실에서 하강시킬 수 있어야 하며, 하강할 때 아크(Arc) 발생 등으로
집전장치에 손상 및 화재발생의 우려가 없도록 절연거리에 따른 하강 시간 조건을 만족 해야 한다. 이들의 입증을 위해 IEC 62497-1, KS C IEC 60913 등을 참고할 수 있다. 다만, 동
작기능이 없는 제3개조 집전장치는 적용하지 않을 수 있다.
3) 집전장치는 절도차량의 다른 기기와 독립된 별도의 동력 및 제어회로에 의하여 작동되어야 한 다. 다만, 동작기능이 없는 제3개조 집전장치는 적용하지 않을 수 있다.
4) 평균 접촉력은 정적 및 공기역학적 성분을 고려하여 설정되어야 한다. 또한 평균 접촉력은 집
전장치를 보장하고, 집전관/전차선의 마모 및 위험요소를 제한하도록 설정되어야 한다.
5) 집전장치는 상호 절연되어야 하며, 절연은 모든 시스템 전압에 대해 적절해야 한다. 시스템 전압
에 대해서는 KS C IEC 60850, 절연요건에 대해서는 IEC 62497-1 등을 참고할 수 있다.
6) 집전장치 구성품의 입증은 KS C IEC 60494-2 등을 참고할 수 있다.
7) 집전장치의 주습판 성능 입증은 IEC 62499 등을 참고할 수 있다.
8) 집전장치 제어유니트가 있는 경우 설정된 기능과 공기누설에 관한 성능을 확인하고, 절연저항
및 내전압의 경우 KS C IEC 60571, IEC 60571, 내 충격 및 진동 성능의 경우 KS C IEC 61373,
IEC 61373, 내 환경 성능의 경우 IEC 60068-2, 전자파 간섭의 경우 KS C IEC 62236-3-2, IEC
62236-3-2를 따르며, KS C IEC 표준과 IEC 표준이 상이한 경우 최신 개정판을 적용한다.
9) 전기적 보호에 대한 설계는 IEC 62313 등을 참고할 수 있다.
10) 그 밖에 집전장치의 설계 및 입증에 관한 사항은 KS C IEC 60494-2, IEC 62486, IEC 62499,
KS R 9248 등을 참고할 수 있다.

4.5.6 비상운전
1) 추진제어장치에 고장이 발생한 경우 그 고장이 정상부위로 파급되지 아니하도록 고장부위는
긴단한 조치에 의하여 전기적으로 분리될 수 있는 구조이어야 한다.
2) 추진제어장치는 1대가 고장난 경우에도 정상으로 작동하는 추진제어장치에 의하여 열차의 대
피운전이 가능하도록 설계하여야 한다.

4.5.7 피뢰기
1) 피뢰기는 집전장치와 대지사이에 설치하여 가선으로부터 유입되는 낙뢰 및 서지전압으로부터
차량을 보호해야 한다.
2) 피뢰기는 뇌서지, 개폐서지, 직류전압 등의 스트레스를 받은 후 열폭주가 발생하지 않도록 충
분한 안전성을 가져야 한다.

4.5.8 주퓨즈
주퓨즈 적용시 전기회로의 합선 등 고장발생시 폭발, 소음 및 연기 등이 발생함이 없이 녹아서 단절되어 과전류를 차단할 수 있는 기능을 가져야 한다.

4.5.9 차단기
1) 차단기는 제어전원 또는 공기압 등을 사용하여 투입 및 차단되어야 한다.
2) 차단기는 전동차의 주회로 스위치 기능 및 고장전류 차단기능을 하여야 한다.
3) 차단기는 상시개폐 및 고장으로 인한 과전류 등을 신속하고 확실하게 차단할 수 있어야 한다.
4) 차단기는 접전장치와 연동되어 주회로 차단기가 차단된 이후에 접전장치를 하강할 수 있도록 하여야 한다. 다만, 동작기능이 없는 접전장치의 경우에는 제외할 수 있다.
5) 차단기의 방수 능력 확인을 위하여 관련 시험을 실시하여야 한다. 상세 시험방법은 IEC 60529에서 규정하는 IPX5에 대한 시험에 따른다.

4.5.10 필터리액터
1) 필터리액터가 설치되는 경우 차량의 운행시 부하변동에 따른 전류량의 변화에 대하여 자기포화가 없어야 한다.
2) 필터리액터는 차량·지상설비 및 기타 노선에 인접한 설비에 대한 전자유도간섭을 최소화할 수 있는 위치에 설치하여야 한다.
3) 필터리액터의 설계 및 입증에 관한 사항은 IEC 60310을 참고할 수 있다.

4.5.11 교직절환기
1) 교직절환기는 교류 또는 직류의 공급전압에 따라 원활한 절환이 가능하도록 설계되어야 한다. 다만, 교직절환기는 직류·교류 겸용 전동차에 한정하여 적용된다.
2) 교직절환기는 제어전원 또는 공기압 등을 사용하여 절환이 가능하여야 한다.

4.5.12 주변압기
1) 주변압기는 교류 또는 직류·교류 겸용 전동차에 한정하여 적용된다.
2) 주변압기는 전차선으로부터 수전되는 교류전압을 인버터/컨버터, 보조전원장치 등에 전원을 공급하기에 충분한 용량을 가져야 한다.
3) 주변압기는 회생제동에 따른 용량을 충분히 고려하여야 한다.
4) 주변압기는 과전류 및 과온 등에 따른 보호기능을 갖추어야 한다.
5) 냉각장치는 장기간 사용에도 과온이 발생하지 않도록 설계되어야 하며, 냉각효과 저하요인이 최소화 되도록 면지 등 이물질 유입이 억제되도록 설계되어야 한다.

4.5.13 비상접지스위치
1) 비상접지스위치는 교류 또는 직류·교류 겸용 전동차에 한정하여 적용된다.
2) 비상접지스위치는 차량 고장이 발생하여 전력계통의 차단이 불가능할 경우 가선을 접지시킬
수 있어야 한다.

4.6 보조전원장치

4.6.1 보조전원장치 설계
1) 보조전원장치는 가선으로부터 집전된 전원을 전동차의 냉난방장치, 공기압축기, 조명기기, 승용기, 제어기기 및 기타 보조전원을 필요로 하는 각종 기기에 안정적으로 공급하도록 한다.
2) 1대의 보조전원장치에 고장 발생시 자동 및 수동으로 연장 급전이 될 수 있도록 하며 이 경우 보조전원 부하도 자동적으로 조정 될 수 있도록 한다.
3) 보조전원장치 각 부위의 동작 상태 및 고장시 상황을 종합제어장치 등으로 전송한다.

4.6.2 보호기능
1) 추진 및 보조전원장치는 이상전압 또는 고장시의 과도전류에 대하여 적절한 보호기능을 가져야 한다.
2) 종합제어장치가 설치된 철도차량의 추진 및 보조전원장치에 발생한 고장은 종합제어장치 등에 기록 및 표시가 되어야 한다.
3) 추진 및 보조전원장치는 일시적인 현상에 의한 고장조건이 사라지고 안전한 상태가 확인된 경우 초기화기능에 의하여 정상적인 동작이 회복될 수 있어야 한다.

4.6.3 연장급전
1) 보조전원장치에 고장이 발생한 경우 해당 보조전원장치는 전기적으로 분리되고 정상으로 작동하는 보조전원장치로부터 연장급전이 가능하여야 한다.
2) 보조전원장치는 연장급전이 동작한 경우에 차량 내 주요 회로 및 장치에 전원을 공급할 수 있는 용량을 확보하여야 하며, 과부하를 방지하기 위하여 차량 운행에 지장이 없는 보조전원계통의 부하가 차단 될 수 있어야 한다.

4.6.4 유도장해의 역제
보조전원장치에 의하여 발생되는 전자간섭은 차량의 안전 및 주변장비에 유해한 영향을 주지 아니하도록 차폐되거나 필터 또는 제어기법 등에 의하여 역제되어야 한다.

4.6.5 보조전원장치용 인버터
1) 인버터의 부품 중 전원 차단시 60V 이상의 충전상태가 5초 이상 유지되는 부품은 사람이 보기 쉬운 위치에 주의표시를 하여야 한다.
2) 인버터의 부품 중 외부로부터 발생되는 정전기에 의하여 손상될 수 있는 부품은 점검·교체 또는 보관시 정전기에 의한 손상으로부터 보호되어야 한다.

4.6.6 축전지
1) 축전지는 발화물질 및 승객용 좌석과 최대한 열어지지 설치 보관되어야 한다.
2) 축전지함은 축전지로부터 누출되는 가스가 축적되지 아니하도록 한기장치를 설치하거나 자연통풍으로 방출될 수 있도록 설계하여야 한다. 다만, 가스가 발생하지 아니하는 축전지를 사용하는 경우에는 그러지 아니할 수 있다.
3) 축전지를 충전할 경우에는 과충전을 방지하고 과전류를 차단할 수 있는 기능을 갖추어야 하며, 축전지와 부하측을 완전히 차단할 수 있는 차단스위치가 설치되어야 한다.
4) 축전지는 철도차량의 단전 또는 고장으로 주전원이 차단된 후 비상조명등 등을 30분 이상 사용할 경우에도 철도차량을 기동할 수 있는 용량을 가져야 한다.
5) 축전지는 운행중 처치전등 및 외부충격에 충분히 견딜 수 있는 구조이어야 한다.
6) 축전지 1대가 고장인 경우에도 다른 정상인 축전지로 전동차를 정상 운전할 수 있도록 한다.
7) 축전지는 충전가스와 공기가 혼합되어 있는 상태에서 발화에 의한 폭발 방지 및 공기 유동이 잘 되도록 한다.
8) 축전지 보호를 위해 단자와 근접한 곳에 퓨즈 또는 차단스위치를 설치한다.
9) 축전지 음극을 접지하여 고장이 발생하면 퓨즈 또는 차단스위치가 차단되도록 한다.
10) 축전지를 보관할 경우에는 방전으로 용량을 잃지 않도록 적절한 보호조치를 강구하여야 한다.
11) 축전지는 폭발, 발화, 파열 등의 손상 및 고장발생시 인근 백으로의 고장확산을 방지할 수 있어야 하며, 이에 대한 관리기능을 갖추어야 한다.
12) 축전지를 구성하는 각각의 백은 고장 확산을 방지하기 위한 안전장치를 설치하여야 하며, 이에 대한 관리기능을 갖추어야 한다.

4.7 차상신호장치

4.7.1 시스템 일반
1) 도시철도차량(모노레일경전철)이 운행되는 선구의 지상에 설치 및 운용되고 있는 열차자동정지장치(ATP : Automatic Train Protection), 지상 신호장치에서 제한속도정보를 수신하여 열차를 제어하는 열차자동차방호장치(ATO : Automatic Train Operation), 열차의 안전운행을 확보하고 계획된 제어방식에 의하여 효율적으로 자동운전을 할 수 있는 열차자동차운전장치(ATC 장치 : Automatic Train Control) 및 무선통신기반열차제어장치(CBTC : Communication Based Train Control)를 포함한다.
2) 도시철도차량(모노레일경전철)이 한 선구에 하나 이상의 지상신호장치가 운용 중일 경우, 지상장치로부터의 제어영역 변경 정보를 차량에서 수신하여 자동으로 차량에서 지상신호장치에 대응하는 차상신호장치로 모드전환하여 차량이 안전하게 운행할 수 있어야 한다. 단, 지상장치로부터 제어영역의 변경정보를 차량에서 수신하지 못하는 경우 적용하지 아니한다.
3) 차상신호장치는 지상신호장치의 정보를 수신하는 지상자 수신부, 차상제어컴퓨터, 기관사 표시장치로 구성한다.
4) 차상신호장치는 관련된 차량 제어장치(운전대 기기, 종합제어장치, 기타 관련장치)와의 인터페이스는 효율적으로 이루어져야 한다.
5) 지상신호장치로부터 정보수신을 위한 차상통신장치는 통신이 용이한 곳에 설치하며, 지상신호장치 통신장치와 정보전송에 이상이 없어야 한다.
6) 차상신호장치는 차량에 설치된 신뢰성 있는 속도센서 또는 속도감지장치와 인터페이스하여야 한다.
7) 차량신호장치는 지상신호장치로부터 전송되여지는 절연구간 에고신호 수신을 통해 차량이 안전하게 절연구간을 통과할 수 있는 기능을 가져야 한다.
8) 차량신호장치는 동작 중 발생되는 각종 고장 및 주요한 상태에 대한 정보를 저장하는 기록장치를 갖추어야 한다.
9) 차량신호장치는 상태정보 및 고장정보를 종합제어장치로 전송한다. 다만, 종합제어장치가 설치되는 차량에 한한다.
10) 차량신호장치는 자기진단기능 기능을 가져야 하고, 열차방호 기능은 바이탈(Vital) 처리 기능이어야 한다. 또한 차량신호장치는 오동작이 발생하였을 경우에도 열차의 안전운행이 확보될 수 있도록 페이일-세이프(fail-safe) 기능으로 동작하여야 한다.
11) 차량신호장치의 상태를 계속적으로 감시하여 성능의 이상 유무를 확인할 수 있어야 한다.
12) 열차자동방호장치는 페이일-세이프 동작 개념에 의한 자동제어 방식의 호환성을 갖는 다중계로 구성하여야 하며, 열차자동운전장치는 단일계가 가능하다.
13) 차량신호장치의 설계, 제작 시 위험원을 고려하여 설계되어야 한다.

4.7.2 열차자동정지장치(ATS)
1) ATS는 지상 선로상의 불연속적인 지상자신호를 검지하여 열차 제한속도를 설정 및 제동하는 장치로서, 단변주식 점제어 방식과 다변주식 속도조사방식이 있으며 해당선 구에 운용 중인 지상신호 방식에 대응하는 ATS 장치가 설치 및 운용되어야 한다.
2) ATS 자동장치 중 경보벨, 기관사 확인 및 복귀스위치는 운전실에 설치되어야 하며, 제동장치와 인터페이스 한다.
3) 점제어식 ATS
 (1) 점제어식 ATS는 지상신호기의 정지신호에서만 동작하며, 정지신호 환신시 열차가 지상 자를 통과하면 운전실의 적색등이 점멸되고 경보벨이 울려 기관사에게 경보를 전달하여야 한다.
 (2) 경보벨이 울릴 경우 일정시간 이내에 기관사에 의해 확인버튼 또는 제동취급 등이 동작되지 않으면, 비상제동이 체결되어야 한다.
4) 속도조사식 ATS
 (1) 속도조사식 ATS는 지상 신호기의 환신에 따른 제한속도 대비 현재 열차속도가 높으면, 기관사가 제동을 취급하도록 경보를 울려 기관사에게 경보를 전달하여야 한다.
 (2) 경보벨이 울릴 경우 일정시간 이내에 기관사에 의해 확인버튼 또는 제동취급 등이 동작되지 않으면, 비상제동이 체결되어야 한다.

4.7.3 열차자동방호장치(ATP)
1) 차량신호장치는 지상신호장치로부터 선로의 인프라정보, 운행상황 정보를 전송받아, 선행열차와의 안전거리 제어 및 속도제어를 담당하는 장치로서, 지상-차량간 정보전송 방식이나 선행 열차와의 안전거리 제어 방식에 따라 다음과 같이 분류한다.
 (1) 열차자동방호장치(ATP : Automatic Train Protection) : 지상신호장치로부터 유도루프 또는 트랜스폰더를 통해 선로인프라 정보, 이동권한 정보를 전송받아 차량의 제동성을 고려하여 선행열차와의 안전거리를 유지하기 위한 차량의 속도를 제어하는 장치이다. 여기서의 열차자동방호장치는 일반·고속용 ATP가 아닌 도시철도차량(모노레일경전철)에 적용
스테이션신호장치를 의미한다.
(2) 무선통신기반열차제어장치(CBTC : Communication Based Train Control) : 지상신호장치에서 차량으로 무선통신을 이용해서 선로인프라 정보, 이동권한 정보를 전송받아 차량의 제동성능을 고려하여 선행열차와의 안전거리 유지하기 위한 차량의 속도를 제어하는 장치이다.
지상-차상 전송매체는 무선을 이용한 방식과 선로상의 유도루프를 이용한 방식이다.
2) 차상신호장치는 차상컴퓨터, 안테나, 기록장치, 차상표시장치로 구성된다.
3) 기관사 표시장치는 기관사 제어콘솔에 위치하며, 목표이동거리 정보, 차상신호 운전모드, 목표속도, 제동체결 정보, 차상신호장치 장치 상태정보, 기타 장치의 운용을 위한 여러 가지 정보를 기관사에게 표시하는 MMI 기능을 제공하여야 한다.
4) 차상신호장치는 지상으로부터 수신한 신호를 판별할 수 있어야 하며, 신호의 변화가 있을 때에는 기관사표시장치에 표시되어야 한다.
5) 차상신호장치는 열차 위치 및 속도 결정, 영속도 측정, 과속검지, 속도 제한 등의 자동열차방호 기능을 수행하여야 한다.
6) 차상신호장치는 의한 열차운전 모드는 일반적으로 아래와 같이 정의되며, 운행방식에 따라 선택 적용될 수 있다.
 (1) 완전자동운전 모드 : ATO 장치에 의한 완전자동운전
 (2) 자동운전 모드 : 확인운전-기관사 탑승(출발버튼을 누름에 따라 출발, 주행, 역 정위치 정차를 자동으로 수행)
 (3) 수동운전 모드 : ATP에 의한 운전
 (4) 비상운전 모드 : 기관사 책임에 의한 수동운전(차상신호장치 기능차단)
 (5) 기지운전 모드 : 기지내 운전체한속도에 따른 수동운전
7) 차상신호장치 중 ATP는 해당 폐색구간의 제한속도코드를 지상신호장치로부터 수신받으며, ATP와 CBTC는 지상으로부터 전송받은 데이터와 차량으로부터의 데이터를 바탕으로 차량의 제동특성을 고려하여 동적 속도 프로파일을 계산하고 이에 따라 차량의 속도를 제어하여야 한다.
8) 차상신호장치는 목표속도신호와 실제속도신호를 비교하여 실제속도정보가 제한속도정보를 일정범위 이상 초과하면 시청각에 의한 경고를 출력하고 제동신호를 출력하여야 한다.
9) 자동 및 무인운전시 시식신호로부터 열차의 이동권한 또는 제한속도 정보를 수신하지 못할 경우 제동 명령이 발생되어야 한다. 또한 지상신호장치로부터 비상정지 신호가 수신되면 차상신호장치는 즉시 비상제동이 발생되어야 한다.
10) 시식제들이 적용된 경우 열차는 완전히 정지되어야 한다. 열차는 비상제동 원인이 해결되고, 기관사나 운전체어실에서 리셋을 하여야만 재출발이 허용된다.
11) 자동열차방호 기능을 갖는 시스템은 어떠한 선로 구간에서라도 임시 속도제한에 따른 운행이 가능하여야 한다.
12) 지상신호장치에 의해 특정선로 구간으로 진입금지 설정 정보를 수신하면, 안전외유 거리를 두고 열차가 정지하여야 한다. 또한 선로종단에 진입하지 못하도록 보호기능을 수행해야 한다.
13) 기지 및 모든 본선 구간에서 운행되는 열차는 자동열차방호기능에 의한 안전운행이 가능하여야 한다.
14) 열차가 정지상태에서 정지위치에서 전후방 어느 쪽으로든 움직일 경우 이동하는 열차의 미끄럼을 검지하여야하며, 일정거리 이상 미끄럼이 검지되면 이전 열차제동이 작동되어야 한다.
15) 차상신호장치는 역전기 또는 지상에서 수신한 운행방향과 열차의 이동방향이 일치하지 아니하면 열차를 정지시키는 기능을 가져야 한다.
16) 속도검지장치로부터 열차속도가 기준속도 이하일 때, 열차정지검지(Zero Speed 검지) 기능
4.7.4 열차자동차운전장치(ATO)
1) 열차자동차운전장치는 열차가 정거장을 출발하여 다음 정거장에 정차할 때까지의 가감속 및 정거장에 정위치 정차하는 일련의 운전행위를 자동으로 수행하는 장치이다.
2) 속도제어 기능
 (1) 본 항은 운전자동차운전모드 및 자동운전모드가 선택되었을 때만 적용되며 한다.
 (2) ATO 장치는 열차의 견인 및 제동시스템에 명령을 내려 열차속도 제어를 수행한다.
 (3) 모든 열차 특성(열차길이, 열차 형식에 따른 최대 안전속도 등)과 선로 특성, ATP에 의한 허용 운행속도 등을 고려하며, 해당 열차의 감속 및 제동성을 고려하여 속도 프로파일을 작성하여야 한다.
 (4) 자동열차운전의 속도 프로파일은 정상운행 중 과속으로 인해 자동열차방호 기능이 활성화되지 않도록 하여야 하며, 역 및 승강장의 정차 지점을 고려하여 가속 및 감속 프로파일을 작성하여야 한다.
 (5) 속도제어 알고리즘은 정상 운행 조건 하에서 저크한계 등을 고려하여 설계되어야 한다.
 (6) ATO의 주행모드는 일정조건에서 타행운전이 가능한 평상모드와 목표속도에서 가능한 최고속도를 행하는 회복모드로 구분하여 적용할 수 있다.
3) 정위치 정차
 (1) 시스템은 열차가 각 역의 지정된 정지위치에 정확히 정지할 수 있도록 열차를 제어하여야 한다.
 (2) 제동 시스템의 허용치 내에서 모든 역 정차에 대해 역 정위치 정차를 하여야 한다. 역 정차는 열차가 완전히 정지하기까지 저크한계를 고려하여 감속 프로파일로 이루어져야 한다.
4) 출입문 제어 및 역출발 제어
 (1) 열차 출입문의 개폐는 운전모드에 따라 자동 또는 열차 기관사에 의해 수동으로 이루어지며, 다음 조건이 설명되는 경우에만 적합한 출입문 열기 가능 신호가 발생해야 한다.
 가. 열차가 상용제동이 적용된 상태로 정지 중인 경우
 나. 열차가 승강장 정지위치 이내에 있을 경우
 (2) 열차출입문이 완전히 닫힐 때 까지 열차 이동이 불가능해야 한다.
 (3) 차량신호장치는 열차운전 중 출입문 닫힘 상태를 감시하여야 하며, 운전중 출입문이 개방되면 제동 정보를 제공하여야 한다.
 (4) ATO 장치는 모든 출입문 (객차 출입문, 승강장 스크린도어)이 닫혔다는 정보를 확인하고, 기관사가 출발 버튼을 누르면 열차를 출발시켜야 한다. 단 운전자동차운전모드에서는 지상 신호장치로부터의 출발명령 수신을 통해 열차가 자동으로 열차를 출발시켜야 하며, 출발 가능 조건이 모두 성립되어야 출발명령이 유효하도록 한다.
5) 자동열차운전 기능을 위해 열차번호 및 행선정보지령, 역코드, 자동방송지령, 출입문 개폐방향, 주행모드 및 기타 필요한 정보는 TWC(Train-Wayside Communication) 등의 통신매체를 통해 지상에서 차량으로 전송할 수 있다.

4.8 종합제어장치

4.8.1 종합제어장치 설계
1) 종합제어장치를 구성하는 컴퓨터간의 정보전송 계통은 페일-세이프 기능을 가져야 한다.
2) 편성제어컴퓨터는 고장이 발생한 경우 정상으로 작동하는 편성제어컴퓨터가 그 기능을 대체수행할 수 있도록 구성되어야 한다.
3) 편성제어컴퓨터의 기억장치에 저장된 열차운행관련 내용은 지워지지 아니하도록 하여야 한다. 단, 기억장치의 저장용량 제한으로 불가피하게 삭제해야할 경우에는 가장 오래된 내용부터 삭제가 되어야 한다.
4) 종합제어장치는 열차의 견인 및 제동과 관련된 신호를 주기적으로 감시하여, 견인 및 제동계통 신호오류 등 고장 발생시 기관사에게 경고 또는 지시할 수 있도록 설계하여야 한다.
5) 종합제어장치는 고장시 오작동 신호가 출력되지 아니하고, 그 기능이 정지되어야 한다.
6) 편성제어컴퓨터 및 차량제어컴퓨터는 장치 고장시 고장의 영향범위가 최소화될 수 있도록 구성하여야 한다.
7) 출입문은 차량제어컴퓨터의 고장으로 인하여 해당차량에 대한 감시 또는 제어기능이 상실된 경우에도 제어될 수 있어야 한다.
8) 한편으로 구성되는 열차가 분리될 경우 이를 검지할 수 있어야 하며, 비상제어이 동작하여야 한다. 또한 예상치 않은 열차의 분리가 검지되면 다른 열차가 분리된 구역에 진입하지 못하도록 안전조치를 취할 수 있다.
9) 종합제어장치의 설계는 KS C IEC 60571, IEC 61375 시리즈, IEC 62280 등을 참고할 수 있다.
10) 종합제어장치가 독립적으로 설치되지 않는 도시철도차량(모노레일경전철)의 경우 상기 제1항 내지 제9항을 적용하지 않을 수 있다. 다만, 신청자는 종합제어장치의 기능이 통합된 해당 장치에서 설계적합성을 입증하여야 한다.

4.8.2 운행상태 확인장치
1) 열차의 운행상태를 기관사가 즉시 확인할 수 있도록 운전실에 버저(Buzzer)·램프(Lamp) 또는 운전지원 및 확인이 가능한 모니터(Monitor) 등이 설치되어야 한다.
2) 모니터에 표시되는 신호는 고장의 중요도에 따라 구분되어야 하며, 이를 기관사가 쉽게 인식하고 이해할 수 있어야 한다.
3) 열차의 운행상태를 확인하는 장치는 다음 각 호의 정보를 확인하는 기능을 갖추어야 한다.
 (1) 제동상태정보
 (2) 출입문작동정보(설치된 철도차량에 한한다)
 (3) 시동장치작동정보
 (4) 차량활동정보(설치된 철도차량에 한한다)
 (5) 축량상태정보(설치된 철도차량에 한한다)
 (6) 화재발생정보(설치된 철도차량에 한한다)
 (7) 주행장치불안정정보(설치된 철도차량에 한한다)
4) 열차의 운행상태를 확인하는 장치는 기관사에게 각종 장치가 정상으로 작동하는지 여부를 통보하는 기능을 갖추어야 한다.
5) 종합제어장치가 독립적으로 설치되지 않는 도시철도차량(모노레일경전철)의 경우 상기 제1항 내지 제4항을 적용하지 않을 수 있다. 다만, 신청자는 종합제어장치의 기능이 통합된 해당 장치에서 설계적합성을 입증하여야 한다.

4.8.3 열차운행기능
1) 종합제어장치는 열차 출고시 출발전 시험을 할 수 있도록 설계하여야 한다.
2) 종합제어장치는 차량기지 및 비상운전상태에서 후진시 제한속도를 초과하지 아니하는 기능을
가져야 한다.
3) 종합제어장치가 독립적으로 설치되지 않는 도시철도차량(모노레일경전철)의 경우 상기 제1항 및 제2항을 적용하지 않을 수 있다. 다만, 신청자는 종합제어장치의 기능이 통합된 해당 장치에서 설계적합성을 입증하여야 한다.

4.8.4 출입문 제어
1) 종합제어장치는 열차 운행중에 출입문이 열리면 열차가 정지되도록 하여야 한다.
2) 차량에는 역 출발시 출입문을 닫기를 온 승객에게 안내할 수 있는 장치를 설치하여야 한다.
3) 출입문은 출입문을 닫을 때 장애물이 깔여 닫히지 아니하면 다시 열리는 구조이어야 한다.
4) 승객의 운송중에 있어서 출입문이 모두 닫히지 아니한 상태에서는 열차가 운행되지 아니하는 구조이어야 한다.
5) 신호장치 등이 제1항부터 제4항까지의 규정과 관련된 기능을 수행하는 경우에는 종합제어장치에서 해당기능을 생략할 수 있다.
6) 승무원이 사용할 수 없는 출입문은 수동으로 잠글 수 있는 잠금장치가 있어야 한다. 잠금 장치는 다음과 같아야 한다.
 (1) 모든 열림 명령으로부터 해당 문을 분리해야 한다.
 (2) 해당 문을 기계적으로 닫힘 위치에서 잠겨야 한다.
 (3) 분리 장치의 상태를 표시해야 한다.
 (4) 출입문 잠김 확인장치는 이 문을 우회하는 것이 허용되어야 한다.
7) 출입문 잠금 확인장치를 통해 기관사는 모든 문이 닫히고 잠겼는지의 여부를 확인할 수 있도록 해야 한다.
8) 출입문의 닫힘 작동에 이상이 있을 경우 기관사에게 알려주는 표시 장치가 갖추어야 한다.
9) 경보신호를 통하여 출입문이 비상 개방되었음을 기관사에게 표시해야 한다.
10) 열차는 출입문 제어장치를 통하여 정차시 자동으로 출입문이 열리거나, 승객 또는 승무원 제어에 따라 출입문이 개방되어야 한다.
11) 출입문-추진장치 인터록 장치를 통해 모든 문들이 닫히고 잠긴 상태에서 추진력이 발휘되어야 하며, 주행 중 출입문이 열릴 경우 열차는 정지하여야 한다.
12) 종합제어장치가 독립적으로 설치되지 않는 도시철도차량(모노레일경전철)의 경우 상기 제1항 내지 제11항을 적용하지 않을 수 있다. 다만, 신청자는 종합제어장치의 기능이 통합된 해당 장치에서 설계적합성을 입증하여야 한다.

4.8.5 무인운전
1) 무인운전의 경우 다음 각호의 기준에 적합하여야 한다.
 (1) 승객과 관제실간에 통신장치를 구축할 것
 (2) 열차운행중에 제동장치의 성능을 주기적으로 감시할 수 있도록 종합제어장치와 신호장치가 상호작용할 것
 (3) 열차의 출입문이 열린 상태에서는 열차가 출발되지 아니하도록 할 것
2) 관제실에는 무인운전의 안전확보를 위하여 운행중인 모든 차량을 감시할 수 있는 장치를 설치하여야 한다.

4.9 연결장치
4.9.1 연결기
1) 철도차량의 양단에는 자동으로 연결되는 구조를 가진 연결기가 설치되어야 한다. 다만, 고정편성차량은 선두 차량의 앞쪽을 제외하고는 그러하지 않을 수 있다.
2) 연결기는 철도차량을 동일형식의 철도차량과 연결하는 경우에 자동적으로 고정되는 구조이어야 하며, 열차운행중 진동 침체 및 가감속 등에 의하여 연결장치가 분리되지 아니하도록 풀림방지장치가 설치되어야 한다. 다만, 동일형식이 아닌 차량들 사이의 연결은 발주자의 추가 요구사항에 따른다.
3) 연결기는 철도차량을 동일형식의 철도차량과 연결하는 경우에 연결기의 상대각도로 인한 상부변위를 고려하여야 하며, 분리하는 경우에는 운전실에서 원격분리를 하거나 연결기 양측면에서 수동으로 분리가 가능하도록 풀림방지장치가 설치되어야 한다. 다만, 동일형식이 아닌 차량들 사이의 연결은 발주자의 추가 요구사항에 따른다.
4) 연결기는 주어진 온도 및 기후조건하에서 운행중 발생하는 하중을 견딜 수 있는 강도를 가져야 한다.
5) 연결기는 정확한 결합여부가 시각·청각 등에 의하여 확인되는 구조이어야 한다.
6) 연결장치에는 스프링을 사용하여서는 아니되며, 비상시 분리하기 쉬운 구조이어야 한다. 다만, 관절형식의 주행장치를 가지는 도시철도차량(모노레일경전철)은 그러하지 아니하다.
7) 통로연결막은 자갈·먼지 및 오염물질 등이 철도차량의 내부로 침투하지 아니하도록 설치하여야 하며, 사용된 재질은 쉽게 약화되거나 천천히 아니하고 물·세정제 및 윤활제 등에 견딜 수 있어야 한다.
8) 연결기의 설계 및 입증은 EN 15566, EN 15020, UIC 825, UIC 826, UIC 527-1, KS R 9208, KS R 9209, KS R 9219 등을 참고할 수 있다.

4.9.2 통로연결장치
1) 연결통로는 승객 등의 안전한 통행을 확보할 수 있어야 하며, 승객 등의 부상은 방지하는 미끄럼 방지 등의 안전장치가 설치되어야 한다.
2) 통로연결장치는 열차운행중 통로연결막의 자동으로 움직임을 방해하는 요소가 있어서는 아니되며, 비상시 분리하기 쉬운 구조이어야 한다. 다만, 관절형식의 주행장치를 가지는 도시철도차량(모노레일경전철)은 그러하지 아니하다.
3) 통로연결막은 자갈·먼지 및 오염물질 등이 철도차량의 내부로 침투하지 아니하도록 설치하여야 하며, 사용된 재질은 쉽게 약화되거나 천천히 아니하고 물·세정제 및 윤활제 등에 견딜 수 있어야 한다.
4) 통로연결막의 부식·균열 및 표면의 벗겨짐 등이 승객의 안전에 영향을 미치지 않아야 한다.
5) 승객들이 한 객차 또는 열차로부터 다른 쪽으로 이동하는 통로로 건널판이 구비된 경우 이로 인하여 승객들에 위험을 초래시키지 않아야 한다.
6) 연결되지 않은 건널판이 있는 채로 운행될 것이 예상된다면, 건널판으로 승객들이 진입하는 것을 막는 것이 가능해야 한다.
7) 통로연결장치의 설계 및 입증은 UIC 561, UIC 520, UIC 521 등을 참고할 수 있다.
5. 시험규격서

1) 신청자는 해당 철도차량에 대한 설계적합성 또는 형식동등성 입증의 일환으로 각종 시험을 검사기관의 승인 하에 시행하여야 한다.
2) 신청자는 각종 시험의 세부항목, 절차, 방법 등을 사전에 검사기관에 제출하여 승인받아 시행하여야 한다.
3) 검사기관은 시험 제15조제1항 또는 제39조제1항의 규정에 따라 다음 각 호를 포함한 각종 시험을 신청자에게 요구할 수 있다.
 (1) 부품시험의 대상항목은 [별표 14]를 참고할 수 있다.
 (2) 구성품시험의 대상항목은 [별표 15]를 참고할 수 있다.
 (3) 완성차시험의 대상항목은 [별표 16]을 참고할 수 있다.
 (4) 예비주행시험
 (5) 시운전시험의 대상항목은 [별표 17]을 참고할 수 있다.
4) 본 시험규격서는 차량형식시험절차서 또는 차량주행시험절차서 작성을 위한 최소한의 요구사항을 규정한 것이며, 세부항목 및 내용은 철도차량의 설계특성 등에 맞게 적용될 수 있다.
5) 본 시험규격서는 법 제26조제1항 내지 제3항의 규정에 따라 실시되는 철도차량의 설계에 관한 형식승인검사의 일부이므로 최고속도는 특정하지 않는 경우 설계최고속도를 의미한다.

5.1 부품시험

5.1.1 내장판 화재시험
1) 적용범위
 해당 철도차량에 적용되는 내장판의 화재에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
 (1) 철도차량 내장판
 (2) 철도차량 내장판 및 표면도장
 (3) 철도차량 내장판 및 표면필름
3) 시험항목별 적용규격 및 판정기준

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>내장판</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @50kW/m²)</td>
<td>-</td>
<td>≤90</td>
<td>≤90</td>
<td>≤60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>Qasb(MJ/m²)</td>
<td>≥1.2</td>
<td>≥1.2</td>
<td>≥1.5</td>
<td>≥1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE(kW/m²)</td>
<td>≥15</td>
<td>≥18</td>
<td>≥20</td>
<td>≥20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤150</td>
<td>≤100</td>
<td>≤75</td>
<td>≤50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤300</td>
<td>≤200</td>
<td>≤150</td>
<td>≤100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(10min)</td>
<td>-</td>
<td>-</td>
<td>≤300</td>
<td>≤200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
<td>≤2.7</td>
<td>≤1.6</td>
<td>≤1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) 시험방법 및 절차
 (1) 최대 평균열방출률(MARHE) 시험
 가. 시험방법은 ISO 5660-1 (Reaction to fire test - Heat release, smoke production

나. 시험장비는 콘칼로리미터법을 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.

다. 최대평균열방출률(Maximum average rate of heat emission)의 계산은 아래와 같이 수행하며 평균열방출률의 데이터 수집은 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission) 값의 최대값으로 한다.

\[
ARHE(t_n) = \frac{\sum (t_n - t_{n-1}) \times \frac{q_n + q_{n-1}}{2}}{t_n - t_1}
\]

라. 내장판 시험의 경우 시험에 부가되는 콘히터의 복사열조건은 50kW/m²으로 설정한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARHE(kW/m²)</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤60</td>
<td></td>
</tr>
</tbody>
</table>

(2) 화염전파시험

가. 시험방법은 ISO 5658-2(Reaction to fire tests - Spread of flame - Part 2: Lateral spread on building and transport products in vertical configuration)을 따른다.

나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.

다. 평균연소지속열(Qasb, Average heat for sustained burning)이라 함은 시료의 연소가 지속되기 위하여 필요한 단위면적당 평균 열량을 말한다.

라. 소화점 임계열류량(CFE, Critical Flux at Extinguishment)이라 함은 시료의 연소시 화염이 더 이상 진행되지 아니하는 지점에서의 단위면적이 시간당 받는 열량을 말한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qasb(MJ/m²)</td>
<td>1</td>
<td>≥1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥1.5</td>
<td></td>
</tr>
<tr>
<td>CFE(kW/m²)</td>
<td>1</td>
<td>≥15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
</tbody>
</table>

(3) 연기밀도 시험

나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.

다. 연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 측정한 투
과율 변화를 이용하여 측정한 값을 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[D_s = G[\log_{10}\left(\frac{100}{T}\right) + F] \]

\[G = \frac{V}{A L}, \]
\[V = \text{챔버의 용량, } ft^3(\text{ 혹은 } m^3), \]
\[A = \text{표본의 노출 면적, } ft^2(\text{ 혹은 } m^2) \]
\[L = \text{연기를 통한 광 경로의 길이, } ft(\text{ 혹은 } m), \]
\[T = \text{광감지 장치로 측정된 광투과율 퍼센트(%)} \]
\[F = \text{필터조건 상수} \]

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds(1.5min)</td>
<td>1</td>
<td>≤150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤50</td>
<td></td>
</tr>
<tr>
<td>Ds(4.0min)</td>
<td>1</td>
<td>≤300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td>Ds(10min)</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤200</td>
<td></td>
</tr>
</tbody>
</table>

(4) 가스유독성 시험
가. 시험방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)를 따른다.
나. 시험체에 부가되는 열복사 강도는 25kW/m² 으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수라 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도 를 기준값과 비교한 지수를 말한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>독성지수 (R)</td>
<td>1</td>
<td>≤3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤1.6</td>
<td></td>
</tr>
</tbody>
</table>

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.
시험항목 (Test List)	Reference Value (g/m²)	측정값 (g/m²)	r(x)
CO₂	14 000	14 000	14 000
CO	280	280	280
NOx	7.6	7.6	7.6
SO₂	53	53	53
HCl	15	15	15
HBr	20	20	20
HF	4.9	4.9	4.9

R (독성지수)

5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측면 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.2 의자 화재시험
1) 적용범위
해당 철도차량에 적용되는 의자의 화재에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
(1) 철도차량 객실 의자
(2) 철도차량 운전실 의자
3) 시험항목별 적용규격 및 판정기준

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>의자 커버</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m²@25kW/m²)</td>
<td>≤ 75</td>
<td>≤ 50</td>
<td>≤ 50</td>
<td>≤ 50</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤ 150</td>
<td>≤ 125</td>
<td>≤ 100</td>
<td>≤ 100</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤ 300</td>
<td>≤ 250</td>
<td>≤ 200</td>
<td>≤ 200</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤ 3.2</td>
<td>≤ 2.7</td>
<td>≤ 2.3</td>
<td>≤ 2.0</td>
</tr>
<tr>
<td>의자 쿠션</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m²@25kW/m²)</td>
<td>≤ 75</td>
<td>≤ 50</td>
<td>≤ 50</td>
<td>≤ 50</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤ 175</td>
<td>≤ 175</td>
<td>≤ 125</td>
<td>≤ 100</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤ 300</td>
<td>≤ 300</td>
<td>≤ 200</td>
<td>≤ 175</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤ 3.6</td>
<td>≤ 3.6</td>
<td>≤ 3.2</td>
<td>≤ 3.2</td>
</tr>
</tbody>
</table>
4) 시험방법 및 절차

(1) 최대 평균열방출률(MARHE) 시험
나. 시험장비는 콘칼로리미터법을 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 최대평균열방출률(Maximum average rate of heat emission)의 계산은 아래와 같이 수행하되 평균열방출률의 데이터 수집은 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission)값의 최대값으로 처리한다.

\[
\text{평균 열방출률 } : ARHE(t_n) = \frac{\sum_{i=1}^{n}(t_n - t_{n-1}) \times \frac{\dot{q}_n + \dot{q}_{n-1}}{2}}{t_n - t_1}
\]

라. 의자 시험의 경우 커버와 쿠션 시험에 부가되는 콘히터의 복사열조건은 25kW/m²으로 몸체의 시험에서는 50kW/m²로 설정한다.

<table>
<thead>
<tr>
<th>시험품목</th>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>커버</td>
<td>MARHE (kW/m²)</td>
<td>1</td>
<td>≤75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>≤50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>≤50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>≤50</td>
</tr>
<tr>
<td>쿠션</td>
<td>MARHE (kW/m²)</td>
<td>1</td>
<td>≤75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>≤50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>≤50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>≤50</td>
</tr>
<tr>
<td>몸체</td>
<td>MARHE (kW/m²)</td>
<td>1</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>≤60</td>
</tr>
</tbody>
</table>

(2) 연기밀도 시험
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 및의 투과율 변화를 이용하여 측정한 값을 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[D_s = G \left(\log_{10} \left(\frac{100}{T} \right) + F \right) \]

\(G = \frac{V}{AL} \),
\(V = \) 함비의 용량, \(ft^3 \) 혹은 \(m^3 \),
\(A = \) 표본의 노출 면적, \(ft^2 \) 혹은 \(m^2 \),
\(L = \) 연기를 통한 광 경로의 길이, \(ft \) 혹은 \(m \),
\(T = \) 광감지 장치로 측정된 광투과율 퍼센트(%)
\(F = \) 필터조건 상수

<table>
<thead>
<tr>
<th>시험품목</th>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>커버</td>
<td>Ds(1.5min)</td>
<td>1</td>
<td>(\leq) 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(\leq) 125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(\leq) 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ds(4.0min)</td>
<td>1</td>
<td>(\leq) 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(\leq) 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(\leq) 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 200</td>
<td></td>
</tr>
<tr>
<td>쿠션</td>
<td>Ds(1.5min)</td>
<td>1</td>
<td>(\leq) 175</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(\leq) 175</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(\leq) 125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ds(4.0min)</td>
<td>1</td>
<td>(\leq) 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(\leq) 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(\leq) 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 175</td>
<td></td>
</tr>
<tr>
<td>몸체</td>
<td>Ds(1.5min)</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ds(4.0min)</td>
<td>1</td>
<td>(\leq) 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>(\leq) 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>(\leq) 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>(\leq) 200</td>
<td></td>
</tr>
</tbody>
</table>

(3) 가스유독성 시험
가. 시험방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)를 따른다.
나. 시험체에 부가되는 열복사 강도는 25kW/m^2으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수라 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.
시험품목	시험항목	위험등급	평가기준	비고
커버	독성지수 (R)	1	≤3.2	
		2	≤2.7	
		3	≤2.3	
		4	≤2.0	
쿠션	독성지수 (R)	1	≤3.6	
		2	≤3.6	
		3	≤3.2	
		4	≤3.2	
몸체	독성지수 (R)	1	≤3.2	
		2	≤2.7	
		3	≤2.3	
		4	≤2.0	

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>Reference Value (g/㎡)</th>
<th>측정값 (g/㎡)</th>
<th>r(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO<sub>2</sub></td>
<td>14 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R (독성지수)

(4) 조립체 시험
가. 시험방법은 EN 45545-2 (Railway applications - Fire protection on railway vehicles Part 2: Requirements for fire behaviour of materials and components) Annex B (Fire testing method for seating)의 세부사항을 따른다. 이는 점화원으로 정해진 EN 45545 사각버너를 세부규정, 의자와의 점화각도 및 설치위치, 시험체의 준비, 시험의 종료 조건, 시험결과의 보고 등에 관한 사항이다.
나. 다만, EN 45545-2 Annex B와 달리 점화조건은 커버의 훼손된 상태(Vandalised seat)를 조건으로 수행하지 않고 정상적인 시트 커버 조건으로 수행한다.
5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 층별 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.3 통로연결막 화재시험
1) 적용범위
해당 철도차량에 적용되는 통로연결막의 화재에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
철도차량 통로연결막
3) 시험항목별 적용규격 및 판정기준
통로연결막의 유형별 합격기준은 아래와 같다.
(A형) 객실간 단부문이 없으며 객실측 통로막에 방염판도 없는 경우
(B형) 객실간 단부문이 있거나 또는 객실측 통로막에 방염판이 있는 경우

<table>
<thead>
<tr>
<th>화재성능</th>
<th>요구기준</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @50kW/m²)</td>
<td>-</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>Qasb(MJ/m²)</td>
<td>-</td>
<td>≥1.2</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE(kW/m²)</td>
<td>≥15</td>
<td>≥18</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤150</td>
<td>≤100</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
<td>≤300</td>
<td>≤200</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.6</td>
<td>≤2.7</td>
</tr>
</tbody>
</table>

	ISO 5660-1	MARHE(kW/m², @50kW/m²)	-	≤90	≤90	≤60
	ISO 5658-2	Qasb(MJ/m²)	-	-	≥1.0	≥1.0
	ISO 5658-2	CFE(kW/m²)	≥7	≥7	≥10	≥10
	ASTM E 662	Ds(1.5min)	≤200	≤150	≤100	≤100
	ASTM E 662	Ds(4.0min)	≤400	≤300	≤200	≤200
	BS 6853 Annex B.2	독성지수(R)	≤3.6	≤3.6	≤2.7	≤2.7

4) 시험방법 및 절차
(1) 최대 평균열방출량(MARHE) 시험
나. 시험장비는 콘칼로리미터법을 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 최대평균열방출량(Maximum average rate of heat emission)의 계산은 아래와 같이 수
행하여 평균열방출률의 데이터 수집은 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission)값의 최대값으로 처리한다.

\[
ARHE(t_n) = \frac{\sum_{n=1}^{N}(t_{n} - t_{n-1}) \times \frac{q_{n} + q_{n-1}}{2}}{t_{n} - t_{1}}
\]

라. 통로연결막 시험의 경우 시험에 부가되는 콘히터의 복사열조건은 50kW/m²로 설정한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARHE (kW/m²)</td>
<td>1</td>
<td>-</td>
<td>(A)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>(B)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤60</td>
<td></td>
</tr>
</tbody>
</table>

(2) 화염전파시험
가. 시험방법은 ISO 5658-2 (Reaction to fire tests - Spread of flame - Part 2: Lateral spread on building and transport products in vertical configuration)를 따른다.
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 평균연소지속열(Qasb, Average heat for sustained burning)이라 함은 시료의 연소가 지속되기 위하여 필요한 단위면적당 평균 열량을 말한다.
라. 소화점 임계열류량(CFE, Critical Flux at Extinguishment)이라 함은 시료의 연소시 화염이 더 이상 진행되지 아니하는 지점에서의 단위면적이 시간당 받는 열량을 말한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qasb(MJ/m²)</td>
<td>1</td>
<td>-</td>
<td>(A)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>(B)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥1.0</td>
<td></td>
</tr>
<tr>
<td>CFE(kW/m²)</td>
<td>1</td>
<td>≥15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≥7</td>
<td>(A)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥7</td>
<td>(B)형</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥10</td>
<td></td>
</tr>
</tbody>
</table>
(3) 연기밀도 시험
나. 시험 환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 및 조의 투과율 변화를 이용하여 측정한 값의 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[
D_s = G \left[\log_{10} \left(\frac{100}{T} \right) + F \right]
\]

\[G = \frac{V}{AL},\]
\[V = \text{챔버의 용량, ft}^3(\text{혹은 m}^3),\]
\[A = \text{표본의 노출 면적, ft}^2(\text{혹은 m}^2)\]
\[L = \text{연기를 통한 광 경로의 길이, ft(혹은 m)},\]
\[T = \text{광감지 장치로 측정된 광투과율 퍼센트(%)},\]
\[F = \text{필터조건 상수}\]

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds(1.5min)</td>
<td>1</td>
<td>≤ 150</td>
<td>(A)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤ 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤ 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤ 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤ 200</td>
<td>(B)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤ 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤ 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤ 100</td>
<td></td>
</tr>
<tr>
<td>Ds(4.0min)</td>
<td>1</td>
<td>≤ 300</td>
<td>(A)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤ 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤ 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤ 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤ 400</td>
<td>(B)형</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤ 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤ 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤ 200</td>
<td></td>
</tr>
</tbody>
</table>

(4) 가스유독성 시험
가. 시험 방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)를 따른다.
나. 시험체에 부기되는 열복사 강도는 25kW/m² 으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수라 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.
시험항목	위험등급	평가기준	비고
독성지수(R)	1	≤3.6	(A)형
	2	≤2.7	
	3	≤1.6	
	4	≤1.6	
	1	≤3.6	(B)형
	2	≤3.6	
	3	≤2.7	
	4	≤2.7	

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.

<table>
<thead>
<tr>
<th>시험항목 (Test List)</th>
<th>Reference Value (g/m²)</th>
<th>측정값 (g/m²)</th>
<th>r(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>14 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조지번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측별 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.4 바닥재 화재시험
1) 적용범위
해당 철도차량에 적용되는 바닥재의 화재에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
(1) 철도차량 바닥재(Floor covering)
(2) 철도차량 바닥구조재
3) 시험항목별 적용규격 및 판정기준
화재성능요구기준

<table>
<thead>
<tr>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>바닥재</td>
<td>ISO 5660-1</td>
<td>MARHE([kW/m²] @25kW/m²)</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE([kW/m²])</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>바닥재</td>
<td>ISO 5660-1</td>
<td>MARHE([kW/m²] @25kW/m²)</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE([kW/m²])</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(4.0min)</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
</tr>
</tbody>
</table>

4) 시험방법 및 절차
(1) 최대 평균열방출률(MARHE) 시험
나. 최대평균열방출률(Maximum average rate of heat emission)의 계산은 아래와 같이 수행하며 평균열방출률의 데이터 수집은 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission)값의 최대값으로 처리한다.

\[
\text{평균 열방출률: } MARHE(t_n) = \frac{\sum_{i=1}^{n} \left(t_n - t_{n-1} \right) \times \frac{q_n + q_{n-1}}{2}}{t_n - t_1}
\]

다. 바닥재 시험의 경우 시험에 부가되는 콘히터의 복사열조건은 25kW/m²으로 설정한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARHE</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤100</td>
<td>-</td>
</tr>
</tbody>
</table>

(2) 화염전파시험
가. 시험방법은 ISO 5658-2 (Reaction to fire tests - Spread of flame - Part 2: Lateral spread on building and transport products in vertical configuration)를 따른다.
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 평균연소지속열(Qasb, Average heat for sustained burning)이라 함은 시료의 연소가 지속되기 위하여 필요한 단위면적당 평균 열량을 말한다.
라. 소화점 임계열류량(CFE, Critical Flux at Extinguishment)이라 함은 시료의 연소시 화염이 더 이상 진행되지 아니하는 지점에서의 단위면적이 시간당 받는 열량을 말한다.
(3) 연기밀도 시험

나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 빛의 투과율 변화를 이용하여 측정한 값을 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[D_s = G \left[\log_{10} \left(\frac{100}{T} \right) + F \right] \]

\(G = \frac{V}{AL} \)
\(V = \) 챔버의 용량, \(\text{ft}^3 \) 혹은 \(\text{m}^3 \)
\(A = \) 표본의 노출 면적, \(\text{ft}^2 \) 혹은 \(\text{m}^2 \)
\(L = \) 연기를 통한 광 경로의 길이, \(\text{ft} \) 혹은 \(\text{m} \)
\(T = \) 광감지 장치로 측정된 광투과율 퍼센트(%)
\(F = \) 필터조건 상수

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFE(kW/m²)</td>
<td>1</td>
<td>≥4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥7</td>
<td></td>
</tr>
</tbody>
</table>

(4) 가스유독성 시험

가. 시험방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)을 따른다.
나. 시험체에 부가되는 열복사 강도는 25kW/m² 으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수라 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.
<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>독성지수 (R)</td>
<td>1</td>
<td>≤ 5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤ 4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤ 3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤ 3.0</td>
<td></td>
</tr>
</tbody>
</table>

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.

<table>
<thead>
<tr>
<th>시험항목 (Test List)</th>
<th>Reference Value (g/m²)</th>
<th>측정값 (g/m²)</th>
<th>r(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1회</td>
<td>2회</td>
</tr>
<tr>
<td>CO₂</td>
<td>14 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R (독성지수)

5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측면 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.5 단열재 화재시험
1) 적용범위
해당 철도차량에 적용되는 단열재의 화재에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
철도차량 단열재 : 유리섬유, 우레탄폼, 멜라민폼 등
3) 시험항목별 적용규격 및 판정기준

<table>
<thead>
<tr>
<th>화재성능 요구기준</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>단열</td>
<td>복·천정</td>
<td>ISO 5660-1</td>
<td>MARHE (kW/m²) @50kW/m²</td>
</tr>
<tr>
<td>재배</td>
<td>부·천정</td>
<td>ISO 5668-2</td>
<td>CFE (kW/m²)</td>
</tr>
</tbody>
</table>

4) 시험방법 및 절차
 (1) 최대 평균열방출률(MARHE) 시험
 나. 시험장비는 콘칼로리미터법을 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
 다. 최대평균열방출률(Maximum average rate of heat emission)의 계산은 아래와 같이 수행한다. 평균열방출률의 데이터 수치는 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission)값의 최대값으로 처리한다.

\[
ARHE(t_n) = \frac{\sum_{i=2}^{n} (t_n - t_{n-1}) \times \frac{q_n + q_{n-1}}{2}}{t_n - t_1}
\]

라. 단열재 시험의 경우 시험에 부가되는 콘히터의 복사열조건은 50kW/m²으로 설정한다.
(2) 화염전파시험
가. 시험방법은 ISO 5658-2(Reaction to fire tests - Spread of flame - Part 2: Lateral spread on building and transport products in vertical configuration)를 따른다.
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 소화점 임계열류량(CFE, Critical Flux at Extinguishment)이라 함은 시료의 연소시 화염이 더 이상 진행되지 아니하는 지점에서의 단위면적이 시간당 받는 열량을 말한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFE(kW/m²)</td>
<td>1</td>
<td>≥7</td>
<td>빽,천정부, 갤시 덤프트 내부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥7</td>
<td>외부 공기 내부</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥10</td>
<td>바닥부</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
</tbody>
</table>

(3) 연기밀도 시험
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 및의 투과율 변화를 이용하여 측정한 값을 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[D_s = G \left[\log_{10} \left(\frac{100}{T} \right) + F \right] \]

G = V/AL,
V = 챔버의 용량, ft³(혹은 m³),
A = 표본의 노출 면적, ft²(혹은 m²)
L = 연기를 통한 광 경로의 길이, ft(혹은 m),
T = 광감지 장치로 측정된 광투과율 퍼센트(%)
F = 필터조건 상수
<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds(4.0min)</td>
<td>1</td>
<td>≤350</td>
<td>벽.천정부. 객실 덕트 내부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤400</td>
<td>외부 공기 내부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤400</td>
<td>바닥부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤250</td>
<td></td>
</tr>
</tbody>
</table>

(4) 가스유독성 시험
가. 시험방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)을 따른다.
나. 시험체에 부가되는 열복사 강도는 25kW/m²으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수라 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>독성지수(R)</td>
<td>1</td>
<td>≤3.0</td>
<td>벽.천정부. 객실 덕트 내부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤4.0</td>
<td>외부 공기 내부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>≤4.0</td>
<td>바닥부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤2.7</td>
<td></td>
</tr>
</tbody>
</table>

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.
시험항목 (Test List)	Reference Value (g/m²)	측정값 (g/m²)	r(x)
CO₂ | 14 000 | | |
CO | 280 | | |
NOx | 7.6 | | |
SO₂ | 53 | | |
HCl | 15 | | |
HCN | 11 | | |
HBr | 20 | | |
HF | 4.9 | | |

R (독성지수)

5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자 번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측면 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.6 전선 화재시험
1) 적용범위
해당 철도차량에 적용되는 전선의 화재에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.
2) 적용 대상
(1) 철도차량 내부 전선류
(2) 철도차량 외부 전선류
(3) 철도차량 통신용 전선류
3) 시험항목별 적용규격 및 판정기준

<table>
<thead>
<tr>
<th>화재성능 요구기준</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전선</td>
<td>내부용</td>
<td>외경 12mm 이상</td>
<td>수직화염전파 (연소거리: m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 60332-3-24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외경 6mm초과 12mm 미만</td>
<td>수직화염전파 (연소거리: m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 60332-3-25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외경 6mm이하 EN 50305</td>
<td>수직화염전파 (연소거리: m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 61034-2</td>
<td>연기밀도 (투과율: %)</td>
</tr>
</tbody>
</table>
4) 시험방법 및 절차

(1) 수직화염전파 시험

가. 전선의 시험방법은 전선의 외경 굴기에 따라
나. 12mm 이상의 경우 : IEC 60332-3-24 (Tests on electric and optical fibre cables under fire conditions - Part 3-24: Test for vertical flame spread of vertically-mounted bunched wires or cables - Category C),
다. 12mm 미만의 경우 : IEC 60332-3-25 (Tests on electric and optical fibre cables under fire conditions - Part 3-25: Test for vertical flame spread of vertically-mounted bunched wires or cables - Category D)
라. 수직화염전파시험기의 지침을 따르며, 시험시료 관련규정은 EN 50305 9.1.2항 규정을 따른다.
마. 시험장비는 정해진 규격에 적합한 수직화염전파시험기를 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.

<table>
<thead>
<tr>
<th>외부용</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>외경 12mm 이상 IEC 60332-3-24</td>
<td>수직화염전파 (연소거리; m)</td>
<td>≤3.6 ≤2.7 ≤1.6 ≤1.6</td>
</tr>
<tr>
<td></td>
<td>외경 6mm 초과 12mm 미만 IEC 60332-3-25</td>
<td>수직화염전파 (연소거리; m)</td>
<td>≤2.5 ≤2.5 ≤2.5 ≤2.5</td>
</tr>
<tr>
<td></td>
<td>외경 6mm 이하 EN 50305</td>
<td>수직화염전파 (연소거리; m)</td>
<td>≤1.5 ≤1.5 ≤1.5 ≤1.5</td>
</tr>
<tr>
<td></td>
<td>IEC 61034-2</td>
<td>연기밀도 (투과율; %)</td>
<td>- ≥25 ≥50 ≥50</td>
</tr>
<tr>
<td></td>
<td>BS 6863 Annex B.1</td>
<td>독성지수(R)</td>
<td>- ≤3.6 ≤2.7 ≤2.7</td>
</tr>
</tbody>
</table>

(2) 연기밀도시험

가. 시험방법은 IEC 61034-2(Measurement of smoke density of cables burning under
defined conditions - Part 2: Test procedure and requirements)를 따른다.
나. 시험환경 및 시료의 전처리 조건(23℃±5℃, 16시간 이상) 등의 규정에 유의하여야 한다.
다. 케이블의 외경에 따라 시험 케이블의 숫자나 번들을 구성하고 케이블 수량에 유의한다.

<table>
<thead>
<tr>
<th>외경 D (mm)</th>
<th>시편의 수량</th>
</tr>
</thead>
<tbody>
<tr>
<td>D > 40</td>
<td>전선 단선(cables)</td>
</tr>
<tr>
<td>20 < D ≤ 40</td>
<td>1</td>
</tr>
<tr>
<td>10 < D ≤ 20</td>
<td>2</td>
</tr>
<tr>
<td>5 < D ≤ 10</td>
<td>3</td>
</tr>
<tr>
<td>1 ≤ D ≤ 5</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>N2</td>
</tr>
</tbody>
</table>

주(Notes)
1. N1 = \(\frac{45}{D}\) 전선(단선)
2. N2 = \(\frac{45}{3D}\) 묶음(주 4에 따름)
3. N1, N2 각 수는 버림 처리하여 정수부만 사용함
4. 전선 묶음은 각 7가닥의 전선으로 20 D에서 30 D 거리 기준으로 한바퀴 돌아가는 정도의 뒤틀림 묶음으로 구성하여 약 0.5mm 지름의 가는 선을 이용하여 묶음의 중앙부로부터 양쪽으로 약 100mm 간격으로 두 바퀴씩 감는 묶음 형태로 제작한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>연기밀도 (투과율: %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>≥25</td>
<td></td>
<td>내부용</td>
</tr>
<tr>
<td>2</td>
<td>≥50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>≥50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>≥70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>외부용</td>
</tr>
<tr>
<td>2</td>
<td>≥25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>≥50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>≥50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 가스유독성 시험
가. 시험방법은 BS 6853 Annex B.1(Code of practice for fire precautions in the design and construction of passenger carrying trains - Annex B.1 Mass based test method(NF X 70-100)을 따른다.
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 독성저수와 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.
<table>
<thead>
<tr>
<th>시험 항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>독성지수 (R)</td>
<td>1</td>
<td>≤3.6</td>
<td>내부용</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>외부용</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤2.7</td>
<td></td>
</tr>
</tbody>
</table>

라. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.

<table>
<thead>
<tr>
<th>시험 항목 (Test List)</th>
<th>Reference Value (mg/g)</th>
<th>측정값 (g/㎡)</th>
<th>r(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>14 000</td>
<td>1회</td>
<td>2회</td>
</tr>
<tr>
<td>CO</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R (독성지수)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측량 구성을 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.7 차체외장 화재시험
1) 적용범위
해당 철도차량에 적용되는 차체외장 부품들의 화재에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
(1) 철도차량 차체외장판
(2) 철도차량 차체외장판 및 도막
(3) 철도차량 차체외장판 및 필름
3) 시험항목별 적용규격 및 판정기준
<table>
<thead>
<tr>
<th>화재성능 요구기준</th>
<th>시험방법</th>
<th>시험항목</th>
<th>합격기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>차체외장</td>
<td>ISO 5660-1</td>
<td>MARHE(kW/m², @50kW/m²)</td>
<td>≤90</td>
</tr>
<tr>
<td></td>
<td>ISO 5658-2</td>
<td>CFE(kW/m²)</td>
<td>≥10</td>
</tr>
<tr>
<td></td>
<td>ASTM E 662</td>
<td>Ds(1.5min)</td>
<td>≤200</td>
</tr>
<tr>
<td></td>
<td>BS 6853 Annex B.2</td>
<td>독성지수(R)</td>
<td>≤3.2</td>
</tr>
</tbody>
</table>

4) 시험방법 및 절차
(1) 최대 평균열방출률(MARHE) 시험
나. 시험장비는 콘칼로리미터법을 사용한다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 최대평균열방출율(Maximum average rate of heat emission)의 계산은 아래와 같이 수행된다. 평균열방출률의 데이터 수집은 2초 간격으로 하고 20분 이내에서 계산된 아래 평균열방출률(Average rate of heat emission)값의 최대값으로 한다.

\[
\text{평균 열방출률} = \frac{\sum (t_n - t_{n-1}) \times \frac{q_n + q_{n-1}}{2}}{t_n - t_1}
\]

라. 차체외장판 시험의 경우 시험에 부가되는 콘히터의 복사열조건은 50kW/m²으로 설정한다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARHE(kW/m²)</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤60</td>
<td></td>
</tr>
</tbody>
</table>

(2) 화염전파시험
가. 시험방법은 ISO 5658-2 (Reaction to fire tests - Spread of flame - Part 2: Lateral spread on building and transport products in vertical configuration)을 따른다.
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 소화점 임계열류량(CFE, Critical Flux at Extinguishment)이라 함은 시료의 연소시 화염이 더 이상 진행되지 아니하는 지점에서의 단위면적이 시간당 받는 열량을 말한다.
형식 항목
<table>
<thead>
<tr>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFE(kW/m^2)</td>
<td>1</td>
<td>≥10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥15</td>
</tr>
</tbody>
</table>

(3) 연기밀도 시험
나. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
다. 연기밀도(Ds, Density of smoke)라 함은 시료의 연소시 발생하는 연기의 양을 및의 투과율 변화를 이용하여 측정한 값을 말한다. 연기밀도 계산은 아래와 같이 계산한다.

\[
Ds = G \left[\log_{10} \left(\frac{100}{T} \right) + F \right]
\]

\[G = \frac{V}{AL},\]
\[V = \text{시험용량, ft}^2(혹은 m}^2,\]
\[A = \text{표본의 노출면적, ft}^2(혹은 m}^2,\]
\[L = \text{연기를 통한 광 경로의 길이, ft}(혹은 m),\]
\[T = \text{광감지 장치로 측정된 광투과율 퍼센트}(%),\]
\[F = \text{필터조건 상수}\]

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds(1.5min)</td>
<td>1</td>
<td>≤200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤100</td>
<td></td>
</tr>
<tr>
<td>Ds(4.0min)</td>
<td>1</td>
<td>≤400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≤200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≤200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≤200</td>
<td></td>
</tr>
</tbody>
</table>

(4) 가스유독성 시험
가. 시험방법은 BS 6853 Annex B.2(Code of practice for fire precautions in the design and construction of passenger carrying trains)를 따른다.
나. 시험체에 부가되는 열복사 강도는 25kW/m^2으로 유지하여야 한다.
다. 시험환경 및 시료의 전처리 조건 등의 규정에 유의하여야 한다.
라. 독성지수로 함은 시료의 연소시 발생된 주요 가스(일산화탄소, 질소화합물 등)의 농도를 기준값과 비교한 지수를 말한다.
도시철도차량
(모노레일경전철)

시험항목

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>독성지수((R))</td>
<td>1</td>
<td>(\leq 3.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(\leq 3.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(\leq 3.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(\leq 3.0)</td>
<td></td>
</tr>
</tbody>
</table>

마. 시험기록표에는 다음과 같이 발생된 가스 성분별 발생량과 독성지수를 표시하여야 한다.

<table>
<thead>
<tr>
<th>시험항목 (Test List)</th>
<th>Reference Value (g/m²)</th>
<th>측정값 (g/m²)</th>
<th>r(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1회</td>
<td>2회</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>14000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CO})</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{NOx})</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO}_2)</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{HCl})</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{HCN})</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{HBr})</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{HF})</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R) (독성지수)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5) 시험기록

시험결과 기록양식에는 다음과 같은 사항을 기록한다.

(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 측량 구조에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.8 내화성능시험

1) 적용범위

해당 철도차량에 적용되는 차체구조의 화재에 대한 설계적합성 또는 형식동등성을 시험으로
입증하는 경우에 적용한다.

2) 적용 대상

(1) 철도차량 바닥구조
(2) 철도차량 단부구조
(3) 철도차량 지붕구조

3) 시험항목별 적용규격 및 판정기준
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>차체 구조</td>
<td>바닥</td>
<td>KS F 2257-5 또는 ISO 834-5 내화성능 유지시간(분)</td>
<td>≥15 ≥15 ≥20 ≥20</td>
</tr>
<tr>
<td>단부, 지붕</td>
<td>KS F 2257-1 또는 ISO 834-1 차염성능 유지시간(분)</td>
<td>≥15 ≥15 ≥20 ≥20</td>
<td></td>
</tr>
</tbody>
</table>

주 1) 차체가 불연재일 경우에는 차체구조 내화성능 시험을 면할 수 있다.
주 2) 600V 이하의 동력 공급 전압을 사용하거나 지붕구조를 통하지 않는 급전 구조를 사용하는 경우는 지붕 구조의 차염성능시험을 면한다. 단부 및 지붕 구조에 대한 차염성능 유지 시간 시험은 차체의 최외부 구조에 대하여 수행하며, 부위에 따라 구조체의 두께가 다른 경우에는 충분히 5㎡ 이상의 면적을 차지하는 가장 얇은 두께를 기준으로 수행한다.

4) 시험방법 및 절차
(1) 내화성능 시험
시험의 일반적인 사항은 아래 KS와 ISO 규격의 최신본을 따른다.
가. KS F 2257-1(건축 부재의 내화 시험 방법 - 일반 요구 사항)
나. KS F 2257-5(건축 부재의 내화 시험 방법 - 수평내력 구획 부재의 성능 조건)
다. ISO 834-1(Fire-resistance tests -- Elements of building construction -- Part 1: General requirements)
라. ISO 834-5(Fire-resistance tests -- Elements of building construction -- Part 5: Specific requirements for loadbearing horizontal separating elements)
마. 시험환경 및 시험체의 전처리 조건 등의 규정에 유의하여야 한다. 이에 관한 세부사항은 KS F 2257-1 7.4항에 따른다.
바. 바닥구조의 경우 시험체에 가중되는 하중은 운행 대상차량의 정원 기준으로 산정하며 바닥구조 전체에 등분포 재하 시험으로 수행함을 원칙으로 한다. 재하부가 정치는 시험하는 동안 부하중의 ±5% 이내의 시험하중을 유지할 수 있어야 한다.
사. 지붕 및 단부 구조에 대한 부하시험의 경우 하중을 부가하지 않는다.
아. 시험체의 크기는 철도차량에 적용된 폭으로 하며, 길이 방향으로는 3m 이상으로 함을 원칙으로 한다. 다만, 철도차량에 적용된 길이가 3m 보다 적은 경우에는 실제 적용된 길이를 기준으로 시험할 수 있다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>위험등급</th>
<th>평가기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>내화성능 유지시간(분)</td>
<td>1</td>
<td>≥15</td>
<td>바닥</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td>차염성능 유지시간(분)</td>
<td>1</td>
<td>≥15</td>
<td>바닥, 지붕, 단부</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td>하중지지력 유지시간(분)</td>
<td>1</td>
<td>≥15</td>
<td>바닥</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>≥15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>≥20</td>
<td></td>
</tr>
</tbody>
</table>
5) 시험기록
시험결과 기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험의뢰자 및 시험체 제작자
(2) 시험품의 형식명 및 제조자번호
(3) 시험실 또는 시험자 정보
(4) 측정일시 및 실험실 환경 조건
(5) 시험체 크기, 두께 및 다층구조의 경우 층별 구성에 대한 기록
(6) 측정항목별 시험결과
(7) 기타 특이사항

5.1.9 전자제어기기시험
1) 적용범위
해당 철도차량에 적용되는 전자제어기기의 환경특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 적용 대상
 (1) 공기조화장치제어기
 (2) 증발기/냉각기 펌용 인버터제어기
 (3) 화재감지장치
 (4) 승강문제어기
 (5) 장애인화장실자동문
 (6) 구원제동제어장치
 (7) 제동블랜딩제어장치
 (8) 제동전자제어장치
 (9) 방송장치
 (10) 열차무선장치
 (11) 속도연산장치
 (12) 속도지령장치
 (13) 해치모듈 및 제어기
3) 참고규격
 (1) KS C IEC 62236-1:철도용 전기자기적합성 - 제1부 : 일반사항
 (2) KS C IEC 62236-2:철도용 전기자기적합성 - 제2부 : 전체 철도 시스템에서 외부로 나가는 방출
 (3) KS C IEC 62236-3-1:철도용 전기자기적합성 - 제3-1부 : 철도차량 - 열차 및 공차
 (4) KS C IEC 62236-3-2:철도용 전기자기적합성 - 제3-2부 : 철도차량 - 장치
4) 시험항목별 적용규격 및 판정기준
 (1) 외관 구조 및 처수 검사
 해당 전자제어기기의 외관 구조 및 처수시험은 다음과 같이 시행한다.
 가. 외관 구조검사

<table>
<thead>
<tr>
<th>시험품</th>
<th>적용 규격</th>
<th>평가 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기기</td>
<td>제작 도면에 따름</td>
<td>설계도면과 비교시 이상이 없을 것</td>
</tr>
</tbody>
</table>
나. 치수 검사

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>제작 도면에 따라</td>
<td>설계 도면의 허용범위 이내</td>
</tr>
</tbody>
</table>

(2) 절연시험

해당 전자제어기의 절연시험은 다음과 같이 시행한다.

가. 절연 저항 시험

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>KS C IEC 60571 또는 KS R 9197</td>
<td>≥ 20 MΩ</td>
</tr>
</tbody>
</table>

나. 내전압 시험

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>KS C IEC 60571 또는 KS R 9197</td>
<td>이상이 없어야 함</td>
</tr>
</tbody>
</table>

(3) 전원 변동

해당 전자제어기의 전원 변동시험은 다음과 같이 시행한다.

가. 직류전원 시험

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>KS C IEC 60571</td>
<td>이상이 없어야 함</td>
</tr>
</tbody>
</table>

(4) 성능

해당 전자제어기의 성능시험은 다음과 같이 시행한다.

가. 입출력 단자 시험

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>제작사와 협의에 따라</td>
<td>이상이 없어야 함</td>
</tr>
</tbody>
</table>

나. 통신단자시험

<table>
<thead>
<tr>
<th>시험품</th>
<th>적 용 규 격</th>
<th>평 가 기 준</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자제어기 기</td>
<td>해당 장치와 연결하여 기능을 확인</td>
<td>이상이 없어야 함</td>
</tr>
</tbody>
</table>

(5) 전자파 적합성

해당 전자제어기의 전자파 적합성 시험방법 및 판정기준은 KS C IEC 62236-3-2, IEC
62236-3-2에 따르며, KS C IEC 표준과 IEC 국제표준이 상이한 경우 최신 개정판을 적용한다.

(6) 온도시험
해당 전자제어기의 온도시험은 저온시험, 고온시험, 온도사이클시험(온도변화시험), 고온고습시험(12 + 12시간 사이클) 및 저온방치시험을 각각 KS C IEC 60571, IEC 60571, KS R 9156에 따르며, KS C IEC 표준과 IEC 국제표준이 상이한 경우 최신 개정판을 적용한다.

(7) 진동, 충격시험
해당 전자제어기의 진동, 충격시험은 각각 KS C IEC 60571 또는 IEC 60571에 따르며, KS C IEC 표준과 IEC 국제표준이 상이한 경우 최신 개정판을 적용한다.

5) 시험방법 및 절차
시험방법 및 절차는 적용규격에 따르며 규격이 정의되지 않은 경우에는 신청자(제작자)와 협의하여 결정한다.

6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 전자제어기형식명 및 제조자번호
(3) 측정항목별 결과
(4) 기타 특이사항

5.1.10 유리창 시험
1) 적용범위
해당 철도차량에 적용되는 전면유리창, 측면유리창 및 내부유리창의 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의
(1) 전면유리창 : 철도 차량의 전면부 또는 후면부에 설치되는 운전실 앞 유리창
(2) 측면유리창 : 운전실을 포함하여 철도 차량 구조체 측면에 설치되는 유리창
(3) 내부유리창 : 철도차량간 통로창유리 및 기타 실내에 설치되는 유리창

3) 참고규격
(1) KS L 2002: 강화유리
(2) KS L 2003: 복층유리
(3) KS L 2004: 접합유리
(4) KS R ISO 3538: 도로차량 - 안전 유리 재료 - 광학적 상태량 시험방법
(5) EN 15152: Railway applications - Front windscreens for train cabs
(6) UIC 566 OR Loadings of coach bodies and their components

4) 시험 방법
(1) 시험조건
가. 모든 유리창은 창틀을 포함하여 가능한 차량에 설치되는 것과 동일한 재료, 형상, 크기, 방법으로 제작된 상태에서 시험을 실시하여 동일한 형상 및 크기 등을 적용하기 어려운 경우 제작자와 협의하여 실시할 수 있다.
나. 측면유리창 및 내부유리창의 종류별로 크기만 다를 경우 협의하여 대표 유리창을 선정하여 시행할 수 있다.
능 확인이 필요한 경우 제작자와 협의하여 실시할 수 있다.
라. 별도로 온도 조건을 지정한 경우를 제외하고 상온에서 실시한다.
(2) 시험항목
각 유리창에 대한 시험의 종류는 표 1에 나타내었다.

표 1 시험의 종류

<table>
<thead>
<tr>
<th>시험의 종류</th>
<th>전면유리창</th>
<th>측면유리창</th>
<th>내부유리창</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계적 특성</td>
<td>충돌시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>박리시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>극한 온도 변화 시험</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>수직 집중하중 시험</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>입력과 수직 집중하중 복합시험</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>광학적 특성</td>
<td>2차 상 분리 시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>광학적 왜곡 시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>헤이즈 시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>투과도 시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>색도 시험</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

(3) 시험장비
시험장비는 충돌시험장치, 챔버(압력/하중/온도) 시험장치, 괴한특성 시험장치와 시험목적, 측정, 기록, 분석에 적합한 부속장비로 한다.
(4) 측정방법
가. 충돌시험(Impact test)
가) 전면유리창의 충돌시험은 EN 15152을 참고할 수 있으며 시험속도 등 세부 시험방법 및 기준 등은 제작사가 제안할 수 있다.
나) 충돌시험은 (0±0.5)℃에서 2회, (20±5)℃에서 2회로 총 4회 실시한다.
다. 박리시험(Spalling test)
가) 전면유리창의 박리시험은 EN 15152를 참고할 수 있으며 세부 시험방법 및 기준 등은 제작사가 제안할 수 있다.
나) 박리시험은 충돌실험과 병행하여 실시한다.
라. 극한 온도 변화 시험(Extreme fluctuations of temperature test)
전면유리창 및 측면유리창에 대해 UIC 566 OR에 따른 극한 온도 변화 시험을 실시하여 규격 요구조건을 만족해야 한다.
라. 수직집중하중시험(Concentrated perpendicular load test)
유리창의 수직집중하중시험 방법은 아래와 같다.
가) 유리창을 지지대에 고정하고 0.1 m × 0.1 m 면적에 2.5 kN의 수직집중하중을 가한다. 단, 도시철도차량(모노레일경전철) 측면유리창이 복층유리인 경우 제작사가 제안한 하중으로 시험할 수 있다.
나) 내부유리창이 KS L 2002 또는 동등이상 규격의 요구조건을 만족할 경우 또는 마. 입력과 수직 집중하중 복합시험을 수행하는 경우, 이 시험을 대체할 수 있다.
다) 집중하중 위치는 유리창의 기하학적 중심, 모서리, 그리고 절반 높이에서 가장 긴 쪽의 중심선의 3분의 1지점 등 최소 3 지점에 반드시 포함해야 한다.
라) 유리창의 내측 및 외측에 대하여 각각 시험을 수행한다.
마) 집중하중을 가하는 동안 유리창의 힘 정도를 측정하며, 크랙 및 파손 기타 결함이 발생하지 않아야 한다.
마. 압력과 수직 집중하중 복합시험(Pressure-concentrated load combine test)
유리창의 압력과 수직 집중하중 복합시험 방법은 아래와 같다.
가) 유리창 전체 면에 동일한 압력을 가할 수 있는 압력챔버 시험장치에 창틀과 함께 고정한다. 이때 압력 누설이 없어야 한다.
나) 외부가 대기압인 조건에서 시험장치 내부에 2.5 kPa 압력과 0.1 m × 0.1 m 면적에 0.8 kN의 수직집중하중을 동시에 가한다. 단, 도시철도차량(모노레일경전철) 측면 유리창이 복층유리인 경우 제작사가 제안한 허용으로 시험할 수 있다.
다) 또한 내부유리창이 KS L 2002 또는 동등이상 규격의 요구조건을 만족할 경우 또는 라) 수직집중하중시험을 수행하는 경우, 이 시험을 대체할 수 있다.
라) 집중하중 위치는 유리창의 기하학적 중심, 모서리, 그리고 절반 높이에서 가장 긴 대각선의 3분의 1지점 등 최소 3 지점을 반드시 포함해야 한다.
마) 유리창의 양면에 대하여 각각 시험을 수행한다.
바) 압력을 가하는 동안 유리창의 힘 정도를 측정하며, 크랙 및 파손 기타 결함이 발생하지 않아야 한다.
바. 2차 상 분리시험(2nd image separation test)
유리창의 2차 상 분리시험은 EN 15152에 따라 실시하여 규격 요구조건을 만족해야 한다.
사. 광학적 왜곡시험(Optical distortion test)
유리창의 광학적 왜곡시험은 EN 15152에 따라 실시하여 규격 요구조건을 만족해야 한다.
아. 헤이즈시험(Haze test)
유리창의 헤이즈시험은 EN 15152에 따라 실시하여 규격 요구조건을 만족해야 한다.
자. 투과도시험(Transmittance test)
유리창의 투과도시험은 EN 15152에 따라 실시하여 규격 요구조건을 만족해야 한다.
차. 색도시험(Chromaticity test)
유리창의 색도시험은 EN 15152에 따라 실시하여 규격 요구조건을 만족해야 한다.
(5) 결과의 분석
결과는 각 측정항목 별 적용 표준 및 제작자 설계기준에 제시된 방법에 따라 분석한다.
6) 평가 기준
(1) 충돌시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(2) 박리시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(3) 극한온도변화시험에 대한 평가기준은 UIC 566 OR에 따라 제시된다.
(4) 수직집중하중시험에 대한 평가기준은 제작사 설계기준에 따라 제시된다.
(5) 압력과 수직집중하중 복합시험에 대한 평가기준은 제작사 설계기준에 따라 제시된다.
(6) 2차 상 분리시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(7) 광학적 왜곡시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(8) 헤이즈시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(9) 투과도시험에 대한 평가기준은 EN 15152에 따라 제시된다.
(10) 색도시험에 대한 평가기준은 EN 15152에 따라 제시된다.
7) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
5.1.11 의자강도시험

1) 적용범위
 해당 철도차량에 적용되는 객실의자의 정하중 강도특성에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.

2) 참고규격
 UIC 566: Loadings of Coach Bodies And Their Components

3) 시험 방법
 (1) 시험체 조건
 가. 최중 도면에 의하여 이상이 없는지 육안으로 확인한다.
 나. 사용상 유해한 흔, 농, 변형, 부풀음, 균열, 오손 등이 없는지 육안으로 확인하여 이상이 없는 완제품을 대상으로 한다.

 (2) 측정항목 및 측정위치
 객실의자의 측정지점과 정하중 기준은 각각 그림 1, 표1과 같다.

 그림 1. 객실의자의 정하중 적용 기준
표 1 객실의자의 정하중 부하 인가 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>측정 위치</th>
<th>하중 값 [N]</th>
<th>가압판 크기[mm]</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>등받이 상부 전/후방</td>
<td>1500</td>
<td>380×380</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>의자 전방 하방향</td>
<td>1000</td>
<td>380×220</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>팔걸이 끝단</td>
<td>750</td>
<td>Φ250</td>
<td>가압판 모서리 R25 mm</td>
</tr>
</tbody>
</table>

(3) 측정 횟수
각 방향 하중별 각 3회 이상 측정한다.

(4) 측정 장비
의자의 기능 부위별 정하중 강도를 측정하기 위한 장비는 정하중시험기, 줄자, Lay-out machine 등으로 한다.

(5) 측정방법
가. 초기 하중 0 %에서 서서히 하중값 100%를 구조물의 시험지점에 가한다.
나. 초기 하중 제거 후 측정기의 영점을 설정한다.
다. 하중을 가한 후 유지한 상태에서 변위량을 측정한다.
라. 하중을 제거한 후 변위량을 측정한다.
마. 시험 중 시험 후 크랙 또는 파손 여부를 확인한다.

4) 결과의 분석
(1) 시험 중 또는 시험 후 균열이나 파손을 육안으로 확인한다.
(2) 하중을 가하기 전의 기준점을 설정한다. 하중을 가했을 때 변형량을 측정한다. 하중을 제거한 후 기준점의 변화를 측정한다.

5) 평가 기준
(1) 시험 후 균열이나 파손이 없어야 한다.
(2) 영구 변형량이 없어야 한다. 단, 하중을 제거한 후의 변형량이 하중을 가했을 때의 변형량의 10% 이내이어야 한다.
(3) 시험 후 정상 기능을 유지해야 한다.

6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기상조건 (온도, 습도, 날씨)
(2) 객실의자의 처수를 포함한 외형상태
(3) 초기기준점
(4) 하중을 가한 상태에서의 변형량
(5) 하중을 제거한 후의 변형량
(6) 측정항목별 결과
(7) 기타 특이사항
5.2 구성품시험

5.2.1 구조체 하중시험

1) 적용범위
 해당 철도차량에 적용되는 구조체에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 참고규격
 (1) EN12663:Railway applications. Structural requirements of railway vehicle bodies
 (2) EN12663-1:Railway applications. Structural requirements of railway vehicle bodies. Locomotives and passenger rolling stock (and alternative method for freight wagons)
 (3) EN12663-2:Railway applications. Structural requirements of railway vehicle bodies. Freight wagons
 (4) EN 15085-1:Railway applications. Welding of railway vehicles and components. General
 (5) EN 15085-2:Railway applications. Welding of railway vehicles and components. Quality requirements and certification of welding manufacturer
 (6) EN 15085-3:Railway applications. Welding of railway vehicles and components. Design requirements
 (7) EN 15085-4:Railway applications. Welding of railway vehicles and components. Production requirements
 (8) EN 15085-5:Railway applications. Welding of railway vehicles and components. Inspection, testing and documentation
 (9) UIC 566:Loadings of coach bodies and their components
 (10) KS R 9223 통근형 전차 - 차체설계 통칙
 (11) KS R 9228 철도차량 차체의 하중시험 방법

3) 시험 방법
 (1) 시험체 조건
 시험체는 차량의 의장을 제외한 골격을 갖춘 구조체를 대상으로 한다.
 (2) 시험종류 및 측정항목
 가. 구조체하중시험의 세부시험으로는 수직하중시험, 압축하중시험, 인장하중시험, 조합하중시험, 운행하중시험, 3점지지하중시험, 리프팅/잭킹, 고유진동수시험(x,y,z)시험으로 구성된다.
 나. 제 1)항에도 불구하고, 철도차량의 설계특성에 따라 별표 7 및 EN 12663-1의 제9장 (Validation programme)을 참고하여 세부시험 항목은 신청자(제작자)와 협의하여 조정할 수 있다.
 다. 제 1)항에 따라 시험을 수행할 경우 시험별 측정항목을 표 1과 같다. 제 2)항에 따라 세부시험이 조정되는 경우에는 측정항목을 조정해야 한다.

표 1. 시험종류별 측정항목
철도차량기술기준
KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

<table>
<thead>
<tr>
<th>시험종류</th>
<th>측정항목</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>응력</td>
</tr>
<tr>
<td>수직하중시험</td>
<td>○</td>
</tr>
<tr>
<td>압축하중시험</td>
<td>○</td>
</tr>
<tr>
<td>인장하중시험</td>
<td>○</td>
</tr>
<tr>
<td>조합하중시험</td>
<td>○</td>
</tr>
<tr>
<td>운행하중시험</td>
<td>○</td>
</tr>
<tr>
<td>리프팅/잭킹</td>
<td>○</td>
</tr>
<tr>
<td>3점지지시험</td>
<td>○</td>
</tr>
<tr>
<td>고유진동수 측정시험(x,y,z)</td>
<td>○</td>
</tr>
</tbody>
</table>

※ 수직방향 고유진동수(굽힘, 비틀림)는 시험으로 입증하고, 횡방향 및 전행방향 고유진동수는 해석으로 입증할 수 있다.

(3) 측정 장비
측정장비는 응력과 변위량, 진동수를 측정하기에 적합한 장비로 대표적인 계측기는 스트레인게이지, 다이얼게이지, 가속도계, 로드셀 등이 있으며 각 계측기는 측정능력을 충분히 반영할 수 있어야 한다.

(4) 측정점의 선정방법
가. 응력의 측정점
 가) 강도계산의 결과 높은응력 발생이 예측되는 부분
 나) 형상 및 단면의 급변화부분, 용접비드의 끝단부 등 응력집중이 예측되는 부분
 다) 구조체 제작시 용접, 가공 등 주의를 요하는 부분

나. 변위량의 측정점
 가) 차량의 길이방향으로 수직방향의 변위량
 (가) 구조체의 지지점
 (나) 출입구의 개구부 양단
 (다) 변형상태가 관측 가능한 위치로 대략 동일간격이 되는 점
 나) 차량단면내의 변위량
 형상 및 단면의 급변화부분등, 구조체의 성능에 영향을 미치는 점으로 한다.
 다. 진동수의 측정점
 진동수의 측정점은 고유모드가 가장 명확하게 나타나는 점으로 한다.

(5) 시험하중
가. 수직하중시험
 (정비중량(W1) + 최대승객하중-대차하중) × 동하중계수-(시험기하중)
 가) 최대승객하중 : 신청자는 발주자와 협의하여 다음의 각호 중 하나를 선택할 수 있다.
 (가) 입석정원의 3배와 좌석정원의 합
 (나) EN 12663-1에 따른 방법
 나) 1인당 승객하중
 (가) 최대승객정원을 가) 또는 가)를 선택한 경우 : 3.3.1.2(하중조건)의 제2항에 따른다.
 (나) 최대승객정원을 가) 또는 가)를 선택한 경우 : EN 12663-1(EN 15663)에서 정한 1인당
 승객하중에 따른다.
 다) 동하중계수는 EN 12663-1을 참고할 수 있다.
(6) 측정방법
가) 구조체의 지지방법
구조체의 지지방법은 대차에 의한 지지방식과 동일하게 지지하며, 차량의 구조에 따라 KS R 9228을 참고하여 신청자(제작자)와 협의하여 결정한다.
나) 시험하중의 부하방법
가) 시험하중은 물탱크, 주물블록, 유압 등을 사용하여 수직하중을 부하한다.
나) 부하는 바닥면적 등분포부하이다.

4) 평가 기준
(1) 각각의 시험은 총 2회를 실시하며 각 시험의 결과는 아래의 기준에 만족해야 한다.
(2) 각각의 시험항목(하중조건)에서 측정된 응력값이 별표7의 평가기준을 만족하여야 한다.
(3) 3점지지시험은 3점지지상태에서 영구변형이 생기지 않아야 한다.
(4) 굽힘 고유진동수 측정시험에서 측정된 고유진동수는 대차와의 공진을 피하기 위하여 10Hz 이상이어야 한다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기상조건 (온도, 습도, 날씨)
(2) 시험하중 확인을 위한 주요 제원 및 시험하중 환산표
(3) 하중인가지점 표시도
(4) 구성품의 재질 및 강도 (항복, 인장, 압축강도)
(5) 측정계이지 부착 지점표시도
(6) 측정지점 선정을 위한 수치해석 결과도
(7) 시험기의 종류·형식·설치위치 및 구성도
(8) 측정항목별 결과
(9) 기타 특이사항

5.2.2 대차시험

5.2.2.1 완성대차검사
1) 적용범위
해당 철도차량에 적용되는 대차의 설계적합성 또는 형식등등성을 시험으로 입증하는 경우의 조립품체결검사 및 대차높이 확인시험에 적용된다.
2) 시험방법
(1) 사전 확인 사항
가) 주요 부품 및 대차프레임 품질 확인
 대차 조립에 사용되는 주요부품 및 대차프레임에 대해서는 품질입증 확인을 위해 철도 안 전법에 의거 실시/확인한 성적서를 확인하고 발행번호를 기록한다.
나) 대차 조립상태 검사 및 기능 확인
 가) 대차에 장착되는 모든 부품들이 장착되어 있는지를 확인한다.
 나) 대차 기능이 정상적으로 작동하는지를 확인한다. 다만, 대차상태에서 확인할 수 있는 항목으로 한정한다.
(2) 조립품 체결검사
가. 부품체결 볼트 및 너트는 진동 및 충격에 의하여 느슨해지거나 풀림을 방지할 수 있는 관서, 분합판 등을 사용하여야 하고, 볼트, 너트에는 이완표시가 되어 있어야 한다.
나. 고무 부품의 경우 꼬어짐이 않여야 한다.
다. 댐퍼의 경우 누유가 없어야 한다.

(3) 대차높이 확인검사

대차높이 검사는 아래와 같은 절차로 실시하며, 차량 공차상태 높이를 기준으로한 후 대차 높이를 측정하여 규정치를 만족하면 양호로 한다.
가. 검사를 원하는 대차를 시험이 가능한 측정장치에 위치시킨다.
나. 공기스프링의 내압이 공차상태압력, 만차상태 압력이 될 때까지 압축공기를 주입한다.
다. 각 조건에서 측정기준점부터 대차의 지정된 높이(h)에 대하여 측정한다.

3) 평가기준
조립품 체결 및 대차높이 확인 검사 결과 규정조건을 만족시켜야 한다.

5.2.2.2 대차하중시험

1) 적용범위

해당 철도차량에 적용되는 대차프레임의 강도특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의

(1) 정하중 (Static force) : 시간에 따라 일정한 하중
(2) 준정적하중(Quasi-static force) : 동적인 외력에 의하지 않고 시간에 따라 변화하는 하중
(3) 동적하중 (Dynamic force) : 동적인 외력에 의하여 시간에 따라 변화하는 하중
(4) 극한하중조건(Exceptional load case) : 정적인 강도특성을 평가하기 위한 최대하중조건에 해당하는 극한하중조건
(5) 피로하중조건 (Fatigue load case) : 피로강도특성을 평가하기 위한 반복적인 하중조건

3) 참고규격

(1) EN 13749: Railway applications - Wheelsets and bogies - Method of specifying the structural requirements of bogie frames
(2) EN 15085-1: Railway applications. Welding of railway vehicles and components. General
(3) EN 15085-2: Railway applications. Welding of railway vehicles and components. Quality requirements and certification of welding manufacturer
(4) EN 15085-3: Railway applications. Welding of railway vehicles and components. Design requirements
(5) EN 15085-4: Railway applications. Welding of railway vehicles and components. Production requirements
(6) EN 15085-5: Railway applications. Welding of railway vehicles and components. Inspection, testing and documentation
(7) KS R 9224: 철도차량용 대차의 하중시험방법
(8) KS R 9210 : 철도차량용 대차스톡 - 설계통칙
(9) UIC 615-4: Motive power units-Bogies and running gear-Bogie frame structure strength tests

4) 정하중 시험

(1) 정하중시험을 실시하기 위해서는 대차프레임에 높은 응력이 발생하는 부위에 스트레인 게이지를 부착하여 변형을 측정하여야 한다. 이때 하나의 방향으로 응력이 발생시에는 단
축 게이지를 부착하고 그렇지 않는 경우에는 3축 게이지를 부착한다.
(2) 신청자는 해당 철도차량 대차의 설계특성에 따라 정하중시험 방법 및 기준 등에 대하여 EN 13749, UIC 615-4 등 적합하다고 판단되는 규격(세부차종의 선택 등)을 적용하여 기술 기준의 요구사항을 입증할 수 있다.
(3) 정하중시험은 극한하중시험과, 정상하중시험으로 구분하여 실시하여야 한다.
5) 피로하중 시험
(1) 도시철도차량(모노레일경전철) 피로시험의 하중조건은 설계를 위해 사용되는 조건을 선택 하여야 하며 다음의 사항은 참고로 이용할 수 있다.
(2) 피로하중 시험은 주 시험과 가능하다면 추가적인 특정 시험으로 구성된다.
(3) 주 시험은 수직하중, 좌우하중 및 비틀림 효과를 고려한 하중에 대하여 전체 대차 프레임 의 피로강도를 평가하는 것이다.
(4) 추가적인 특정 시험은 해석이나 정하중 시험결과로부터 지시된 특정 부위에 적용된다. 대 차 프레임에 장착된 댐퍼, 제동, 전후하중 및 중량에 대한 하중을 부가하여 대차프레임의 특정 부위 평가한다.
(5) 일반적으로 피로시험은 하나의 대차 프레임으로 시험한다.
(6) 신청자는 해당 철도차량 대차의 설계특성에 따라 피로시험 방법 및 기준 등에 대하여 EN 13749, UIC 615-4 등 적합하다고 판단되는 규격 및 차종을 적용하여 기술기준의 요구사항을 입증할 수 있다.
6) 평가기준
(1) 정하중 시험
 가. 극한하중 시험
 모든 하중조건에 대하여 다음의 사항이 만족되어야 한다.
 가) 측정된 응력이 재료의 항복강도 이하이어야 한다.
 나) 하중 제거 후 영구변형이 없어야 한다.
 나. 정상하중 시험
 각각의 하중조건에 따른 응력이 재료의 피로한도 이내이어야 한다.
(2) 피로 시험
 대차 프레임은 다음의 조건을 만족하도록 충분한 강성을 가져야 한다.
 가. 1, 2 단계 : 균열이 발생되여서는 안된다.
 나. 3 단계 : 운행 중에 발생한다면 즉각적인 보수가 필요하지 않은 미소 균열은 허용된다.
7) 시험기록
 기록양식에는 다음과 같은 사항이 포함되어야 한다.
 (1) 정하중 시험
 가. 하중의 크기, 조합, 방향 및 위치를 포함한 시험 프로그램 문서
 나. 지그, 액튜에이터, 내재된 단순화 및 한계를 포함한 시험 단계별 문서
 센서(스트레인 게이지, 로드 셀, 변위센서 등) 종류 및 위치, 교정 문서
 계측된 변형률 및 응력, 허용 값 등의 해석 및 평가 방법
 마. 각각의 측정위치에서 평가기준 및 결과
 (2) 피로 시험
 가. 하중의 크기, 조합, 방향 및 위치, 반복 싸이클을 포함한 시험 프로그램 문서
 나. 지그, 액튜에이터, 내재된 단순화 및 한계를 포함한 시험 단계별 문서
다. 센서(스트레인 게이지, 로드 셀 등) 종류 및 위치, 교정 문서
라. 비파괴 검사 방법 및 스케줄을 포함한 평가 기준
마. 비파괴 검사 시험결과
바. 평가기준에 대한 분석 결과

5.2.3 차체지지장치시험
1) 적용범위
신청자(제작자)는 차체지지장치(주행장치와 차체 연결부 지지장치)의 설계적합성 또는 형식등
동성 입증을 해석서(계산서) 또는 시험으로 선택할 수 있다. 신청자가 차체지지장치에 대해
시험으로 입증하는 경우 본 시험규격서를 적용한다.
2) 참고규격
(1) EN 12663-1: Railway applications. Structural requirements of railway vehicle bodies. Locomotives and passenger rolling stock (and alternative method for freight wagons)
(2) EN 15085-1: Railway applications. Welding of railway vehicles and components. General
(3) EN 15085-2: Railway applications. Welding of railway vehicles and components. Quality requirements and certification of welding manufacturer
(4) EN 15085-3: Railway applications. Welding of railway vehicles and components. Design requirements
(5) EN 15085-4: Railway applications. Welding of railway vehicles and components. Production requirements
(6) EN 15085-5: Railway applications. Welding of railway vehicles and components. Inspection, testing and documentation
(7) UIC 566: Loadings of coach bodies and their components
(8) KS R 9223 통근형 전차 - 차체설계 통칙
(9) KS R 9228 철도차량 차체의 하중시험 방법
3) 시험방법
(1) 하중조건
가. 도시철도차량(모노레일경전철)의 차체지지장치 강도시험을 위한 하중조건은 EN 12663-1
을 참고할 수 있다.
 가) 구조체 요구사항 : 제5장 (Structural requirements)
 나) 하중조건 : 제6장 (Design load cases)
 다) 허용응력 : 제7장 (Permissible stresses for materials)
 라) 하중시험 : 제8장 (Requirements of strength demonstration tests)
 마) 입증방법 : 제9장 (Validation programme)
나. 도시철도차량(모노레일경전철)의 설계특성에 따라 EN 12663-1 외에도 KS R 9223, KS R 9228, EN 15085-1, EN 15085-2, EN 15085-3, EN 15085-3, EN 15085-4, EN 15085-5 등
 을 선택적으로 참고할 수 있다.
(2) 사전 시험준비
가. 시험대상의 차체지지장치에 대한 구조해석을 수행하여 고응력이 적용하는 부위에 스트레인게이지를 장착한다.
나. 시험 차체는 하중이력이 없는 상태이므로 차체의 안정화를 위하여 에비 하중시험을 실
시한다. 또한, 예비 하중시험 상태에서 구조해석 결과와 일치하도록 스트레인게이지를 조정한다.

(3) 하중시험
주행장치를 바닥에 고정한 상태에서 열차진행방향(Fx), 열차 횡방향(Fy), 수직방향(Fz)에 대해 시험하중을 각각 가한 후 주행장치와 차체연결부 지지장치에 영구변형이나 파손이 발생되지 않는지를 육안으로 확인하면서 각 하중조건에서 각종 계측량을 측정한다.

4) 평가기준
주행장치와 차체의 연결부위는 “3)-(1)” 항의 하중조건에서 영구변형이나 파손이 발생하지 않아야 하고 하중이 제거된 후에도 정상적으로 작동되어야 한다. 또한, 각 하중조건에서 측정한 응력값이 사용재질의 항복강도 이하인가를 확인한다.

5.2.4 집전장치시험
1) 적용범위
해당 철도차량에 적용되는 집전장치의 구성품특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의
용어의 정의는 국제표준을 따르는 KS규격 KS C IEC 60494-2 및 IEC 62499를 따르며 주요 내용은 다음과 같다.

(1) 집전장치 : 1개 이상의 전차선에서 집전하는 장치로서, 하부 프레임, 동작 시스템, 집전 헤드 등으로 구성된다. 형상은 판토테그램방식, 제3궤조방식 등 다양하고, "동작" 위치에서 이 장치는 전체적 또는 부분적으로 전압을 받는다. 전차선에서 차량 전기 시스템으로 전류가 전달되도록 해준다.

(2) 프레임 : 집전장치 하부 프레임에 대해 수직 방향으로 집전 헤드를 움직일 수 있도록 해주는 관절형 구조체

(3) 판토테그램 집전헤드 : 프레임에 의해 지지되는 집전장치 부분으로서 집전판, 혼(horn) 등을 포함하며 현장장치도 포함한다.

(4) 집전판 : 집전헤드의 교체 가능한 마모 부분으로 전차선과 접촉한다.

(5) 철연판 : 제3궤조 집전장치 프레임과 차체 또는 대차 프레임 사이를 절연

(6) 동작 시스템 : 제3궤조 집전장치의 관절 링크와 스프링으로 구성되어 집전장치와 전차선 사이의 접촉을 유지

(7) 제3궤조 집전장치 집전헤드 : 동작 시스템과 집전판 사이에서 접촉력을 전달하고 전차선의 각도 변화에 따라 집전판의 고른 접촉을 유지

3) 참고규격
다음의 규격은 이 시험방법에 인용됨으로써 이 시험방법의 일부를 구성한다. 이러한 인용규격 중 발행연도가 표기되어 있는 규격은 해당 연도의 발행판만이 이 시험방법을 구성하는 것으로 하고, 그 이후의 개정판이나 추가분은 적용하지 않는다. 발행연도를 표기하지 않은 규격은 그 최신판을 적용한다.

(1) KS C IEC 60494-2:철도용 전기 설비 - 집전장치의 특성 및 시험 - 제2부 : 도시철도 차량용 집전장치

(2) IEC 62499: Railway applications - Current collection systems - Pantographs, testing methods for carbon contact strips

(3) KS C IEC 62236-3-2:철도용 전기자기적합성 - 제3-2부 : 철도차량 - 장치
(4) IEC 60068-2-1: Environmental testing - Part 2-1: Tests - Test A: Cold
(5) IEC 60068-2-2: Environmental testing - Part 2-2: Tests - Test B: Dry heat
(6) IEC 60068-2-14: Environmental testing - Part 2-14: Tests - Test N: Change of temperature
(7) KS C 0227: 환경 시험 방법 - 전기/전자 - 온습도사이클 (12h + 12h) 시험방법
(8) IEC 60068-2-30: Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle)
(9) KS C IEC 61373: 철도 차량 설비의 충격 및 진동 시험 방법
(10) KS C IEC 60571: 철도 차량용 전자 기기의 개별 요구 사항

4) 시험 방법

(1) 구성품 조건
가. 구성품은 실제 사용되는 구성품으로 하며 설계승인된 내용과 동일하여야 한다.
나. 측정은 집전장치를 구성하는 부품별로 실시한다.
다. 시험은 운영되는 상태와 동일한 조건을 기본으로 한다.
라. 구성품은 유지보수 규정에 따라 충분히 정비되어 있어야 한다.

(2) 시험항목 및 방법
가. 집전장치 구성품은 KS C IEC 60494-2를 참고하여 시험을 실시한다.
나. 집전장치를 구성하는 부품 중 주요한 IEC 62499 등을 참고하여 시험을 실시한다.
다. 집전장치 중 전자 제어유니터가 있는 경우 다음과 같이 실시한다.

전자/공압 제어 유니터가 있는 경우 해당사항에 대하여 사양 및 기술적 특성을 제시하여야 한다.
가) 육안검사
유해한 흙이나 부식이 없어야 하며 배선상태, 결선상태, 설치상태 등이 설계도면과 비교시 이상이 없어야 한다.
나) 치수검사
제시된 도면의 치수를 측정하여 공차범위 이내임을 확인한다.
다) 중량측정
중량 측정기를 이용하여 중량을 측정하고 제시된 범위 이내임을 확인한다.
라) 기능시험
집전장치의 움직임이 제시된 기능을 통하여 작동여부를 확인한다.
마) 전기 연속 시험
전원공급장치에 20Ω 저항을 연결하여 1A 전류를 셋팅하여 제어 전원과 접지간에 100mV를 초과하지 않아야 한다.
바) 절연저항 시험
KS C IEC 60571, 12.2.9.1에 따라 저항 500V 절연저항계를 사용하여 프레임과 접지 사이를 측정하여 20MΩ 이상임을 확인한다. 내전압 시험 종료 후 절연저항 시험을 다시 측정하여 20MΩ 이상임을 확인한다.
사) 내전압 시험
KS C IEC 60571, 12.2.9.2에 따라 터미널 단자와 접지 사이에 교류 1000V를 1분간 가하여 견딜 수 있음을 확인한다.
아) 공기 누설 시험 (해당하는 경우에 한한다)
(가) Bellow와 자동하강장치 사이에 공압계를 설치한다.
(나) 압력조절장치를 완해 시키고 외부 공기 최대압력을 입력시킨다.
(다) 전자밸브를 동작시켜 배관연결 및 압력조절장치에 비눗물 또는 거품스프레이로 누기 되는지 확인한다. 압력조절장치를 정상작동 입력으로 조정하여 배관연결 및 압력조절장치에 비눗물 또는 거품스프레이 등으로 누기 되는지 확인한다.

자) 진동 및 충격시험

KS C IEC 61373에 의하여 진동 및 충격시험을 실시한다.

차) 환경시험 (해당하는 경우에 한한다)

차량의 환경조건과 동일한 온도조건으로 IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-14, IEC 60068-2-30에 의하여 저온시험, 고온시험, 온도사이클 시험, 고온고습시험을 실시한다.

카) 전자파 시험 (해당하는 경우에 한한다)

접전장치 제어유니트가 있는 경우 전자파 시험은 KS C IEC 62236-3-2에 따르며, KS C IEC 표준과 IEC 국제표준이 상이한 경우 최신 개정판을 적용한다.

라. 접전장치(3궤조방식)의 접촉력과 상승/하강높이를 측정한다.

(3) 측정 장비
가. 관련시험 전용/범용 장비
나. 각 시험 장비는 공인검정기관 또는 관련규격에 의해 발행하는 검/교정 성적서의 유효기간 이내에 있을 것.

5) 결과의 분석

(1) 각 시험 특성에 따라 결과를 기록지에 작성한다.
(2) 시험결과가 직접적으로 판정에 사용하지 않는 경우 분석과정과 분석결과를 작성한다.

6) 시험기록

기록양식에는 다음과 같은 사항을 기록한다.

(1) 측정일시 및 기후
(2) 접전장치/전자제어 유닛, 주습판 상태
(3) 측정장소
(4) 측정자
(5) 시험기의 종류-형식-설치위치 및 구성도
(6) 측정항목별 결과
(7) 기타 특이사항

5.2.5 추진제어장치시험

5.2.5.1 주전력변환장치

1) 적용범위

해당 철도차량에 적용되는 추진제어용 전력변환장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.

2) 참고규격

(1) KS C IEC 61287-1:철도용 전기 설비-철도용 전력 변환 장치-제1부:특성 및 시험 방법
(2) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구사항
(3) KS C IEC 61373:철도 차량 설비의 충격 및 진동 시험 방법
(4) KS R 9144 철도 차량 부품의 진동시험 방법
(5) KS C IEC 62236-3-2:철도용 전기차계적합성 제 3-2부: 철도차량 - 장치
(6) IEC 60529 Degrees of protection provided by enclosures (IP Code)
(7) KS C IEC 61133: 전기 건인 및 엔진 건인 철도 차량의 사용 전 완성차 시험 방법
(8) KS C IEC 60850:철도용 건인 시스템의 공급 전압
(9) IEC 62313: Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
(10) IEC 62497-1: Railway applications. Insulation coordination. Basic requirements. Clearances and creepage distances for all electrical and electronic equipment
(12) IEC 62313, Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
(13) KS C IEC 60913: 철도용 전기 설비-전기 견인용 가공 급전선로
(14) IEC 62499: Railway applications - Current collection systems - Pantographs, testing methods for carbon contact strips
(15) EN 15663: Railway applications. Definition of vehicle reference masses
(16) IEC 62486: Railway applications. Current collection systems. Technical criteria for the interaction between pantograph and overhead line (to achieve free access)

3) 시험 구분

<table>
<thead>
<tr>
<th>시험항목</th>
<th>형식승인</th>
<th>완성검사</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 외관구조검사</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>2 측정시험</td>
<td>○</td>
<td>○</td>
<td>주1)</td>
</tr>
<tr>
<td>3 절연저항시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>4 내전압시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>5 보호감출 기능시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>6 제어기능시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>7 냉각시험</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 경부시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>9 소음시험</td>
<td>○</td>
<td></td>
<td>주2)</td>
</tr>
<tr>
<td>10 온도상승시험</td>
<td>○</td>
<td></td>
<td>주2)</td>
</tr>
<tr>
<td>11 효율시험</td>
<td>○</td>
<td></td>
<td>주2)</td>
</tr>
<tr>
<td>12 공급 과전압과 과도 에너지시험</td>
<td>○</td>
<td></td>
<td>주2)</td>
</tr>
<tr>
<td>13 안전요구시험</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 진동시험</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 전자파적합성시험</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 방수시험</td>
<td>○</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주1) 중량측정시험은 형식시험으로 실시함.
주2) 시험조건의 제약이 있는 경우에는 추진제어장치 조합시험에서 실시할 수 있음.

4) 시험 항목
(1) 외관구조검사
부품의 조립 배선 등 제작상태와 전선 및 부품의 식별표시의 적합성과 제작 중 외합 및 구조상의 손상이나 결합여부의 확인을 목적으로 한다.
(2) 측정시험
장치의 크기, 중량에 대한 적합성 여부의 확인을 목적으로 한다.
(3) 절연저항시험
추진제어용 전력변환장치 구성회로의 절연저항 측정으로 절연의 적합성 확인을 목적으로 한다.
(4) 내전압시험
추진제어용 전력변환장치 구성회로의 내전압 성능확인을 목적으로 한다.
(5) 보호검출 기능시험
전압검출기, 전류검출기, 온도센서 등 보호검출장치에 대한 이상조건 발생 시 검출기능의 정확성 확인을 목적으로 한다.
(6) 제어기능시험
추진제어용 전력변환장치제어기의 구동신호 및 내부 구성요소 간 혹은 외부 기기에 대한 제어신호의 적합성여부 확인을 목적으로 한다.
(7) 냉각장치시험
강제 냉각방식의 추진제어용 전력변환장치에 있어서 냉각장치 성능특성의 적합성 확인을 목적으로 한다.
(8) 경부하시험
정상등작조건 운전 시 추진제어용 전력변환장치 출력파형을 측정함으로서 추진제어용 전력변환장치의 정상등작여부 확인을 목적으로 한다.
(9) 소음시험
추진제어용 전력변환장치 동작 시 소음을 측정하여 규정된 소음수준에 대한 적합성의 확인을 목적으로 한다.
(10) 온도상승시험
추진제어용 전력변환장치 동작 중 구성요소가 허용온도범위에 있는지 확인을 목적으로 한다.
(11) 효율시험
이 시험은 추진제어용 전력변환장치 효율의 평가를 목적으로 한다.
(12) 공급과전압과 과도 에너지시험
이 시험은 규정된 입력조건에서 추진제어용 전력변환장치가 손상 없이 동작하는지를 확인하기 위해 시행하는 항목이다.
(13) 안전요구시험
안전에 대한 적합성 확인을 목적으로 한다.
(14) 진동시험
차량의 운행 중 발생되는 진동에 대한 추진제어용 전력변환장치의 안전성 확인을 목적으로 한다.
(15) 전자파적합성시험
외부에서 추진제어용 전력변환장치로 유입되는 전자기 노이즈에 대한 간섭의 수준을 평가
하고 안전성 확인을 목적으로 한다.

(16) 방수시험
추진제어용 전력변환장치 외함의 방수능력 확인을 목적으로 한다.

5) 시험 방법 및 판정기준

(1) 외관구조검사
추진제어용 전력변환장치 구성부품의 조립 구성요소 간 결선 등 제작상태와 전선 및 부품의 식별표시가 도면에 적합하고 구조상 손상이나 결합여부를 확인하여 이상이 없어야 한다.

(2) 측정시험
도면에 기재되어 있는 차수와 중량을 측정하여 그 허용범위 내에서 이상이 없어야 한다.

(3) 절연저항시험
가. 시험조건
 염) 절연저항시험은 4)-(4)의 내전압시험 전후에 각각 시험한다.
 나) 추진제어용 전력변환장치 내부의 전기적인 회로는 전압별로 고압회로, 저압(제어회로) 회로로 구분하여 시험전압이 인가되도록 서로 연결하여 시험한다.
 다) 시험회로에 연결되지 않은 구성품이나 세부품(예로 제어회로, 견인전동기 및 팬)은 절연저항시험동안 접지시켜 시험전압으로부터 보호되도록 한다.

나. 측정항목
 가) 고압회로 - 접지
 나) 저압(제어)회로 - 접지
 다) 고압회로 - 저압(제어)회로

다. 시험방법
 가) 고압회로에는 직류 1000 V 절연저항계를 저압 및 제어회로에는 직류 500 V 절연저항계를 사용한다.
 나) 결과는 다음을 만족해야 하며 내전압시험 전후에 측정한 값에 현저한 변화가 없어야 한다.

고압회로 - 접지(100MΩ 이상)
저압(제어)회로 - 접지(30MΩ 이상)
고압회로 - 저압(제어)회로(30MΩ 이상)

(4) 내전압시험
가. 시험조건
 가) 내전압시험은 실시하기 전후에 5)-(3)의 절연저항시험을 반드시 실시하여 절연저항에 이상이 없음을 확인하여야 한다.
 나) 추진제어용 전력변환장치 내부의 전기적인 회로는 전압별로 고압회로, 저압(제어회로) 회로로 구분하여 시험전압이 인가되도록 서로 연결하여 시험한다.
 다) 시험회로에 연결되지 않은 구성품이나 세부품(예로 제어회로, 견인전동기 및 팬)은 내전압시험동안 접지시켜 시험전압으로부터 보호되도록 한다.

나. 측정항목
 가) 전기적으로 절연된 통전부
 나) 접지와 통전부
 다) 기타 성능확인을 위한 필요부위를 시험하되 가)외나)의 시험 외에 대하여는 시험전
압을 장치에 무리가 없는 범위에서 설정하도록 한다.

다. 시험방법
가) 집단으로 설치되는 장치는 조합하여 연결된 상태에서 실시할 수 있다.
나) 주파수는 상용주파수, 시간은 1분으로 한다.
다) U는 정격전압 이며, 회로의 접지에 영구적으로 연결되는 중성점이 포함되어 있으면 U는 공급전압의 1/2로 한다.
라) 상온에서 10초 이상 연속으로 전압을 상승시키며 시험전압에 도달시키고 1분간 유지한다. 이때, 시험되지 않는 다른 회로는 접지되어야 한다.
마) 시험전압은 실험치 (r.m.s) 값으로 다음과 같이 정해진다.

\[U_p = \frac{2U_m}{\sqrt{2}} + 1000V \]

여기에서 공칭전압 \(U_m\)은 내전압을 인가하는 두 단자사이의 최소 반복 파크 동작전압이다. 어떤 이유로든 이 시험을 반복할 필요가 있는 경우 두 번째 시험의 전압 값은 절연에 미치는 영향을 고려하여 시험전압 \(U_p\)의 85% 정도로 감소하여 실시한다.

(5) 보호검출 기능시험
가. 시험조건
가) 추진제어용 전력변환장치의 주전원은 인가하지 않은 상태에서 제어기에 필요한 제어전원을 인가한다.
나) 제어전원은 정격전압 및 정격전압 변동범위의 최소전압과 최대전압을 각각 시험한다.

나. 측정항목
가) 각종 검출기의 검출특성
나) 검출회로의 검출신호 파형
다. 시험방법
가) 추진제어용 전력변환장치에 사용된 검출기에 대하여 단계별 검출특성을 확인한다.
나) 추진제어용 전력변환장치의 검출회로에 등가신호를 입력하여 출력파형을 확인하며 보호동작의 적합성을 확인한다.

(6) 제어기능시험
가. 시험조건
가) 추진제어용 전력변환장치제어를 담당하는 제어기의 특성을 확인한다.
나) 추진제어용 전력변환장치제어기에 전원을 공급하여 각 기능에 대해 정상동작여부를 확인한다.

나. 측정항목
가) 동작 시퀀스
나) 전력반도체 구동신호
다) 주간제어기 지령신호 (노치 및 전/후진)
라) 역행/제동
마) 차단기 동작상태 신호
바) 제어전원 출력전압
사) 종합제어장치와의 인터페이스 신호 (종합제어장치가 별도로 설치되는 경우에 한한다)
아) 제동제어장치와의 인터페이스 신호
자) 기타 동작상태 확인을 위하여 필요한 신호

다. 시험방법
가) 추진제어용 전력변환장치 및 고압장치와의 동작 시퀀스는 차량의 동작조건에 따라 시험한다.
나) 각 상을 구성하는 전력반도체 구동신호의 파형, 동작시간 및 위상관계를 확인한다.
다) 주간제어기의 신호를 노치별로 변화시켜 출력전압을 확인한다.
라) 전진, 후진, 역행, 제동, 회생 조건에서 게이트 동작 시 속도 주파수를 변화시켜 출력주파수 변환을 확인한다.
마) 제어전원 공급장치의 입력전압을 변동시켜 출력력 전압을 유지하는지 확인한다.
바) 신호장치 또는 종합제어장치와의 인터페이스 지령신호에 대해 추진제어용 전력변환장치가 정상적으로 동작하는지를 확인한다.
사) 제도제어장치와의 인터페이스 지령신호에 대해 추진제어용 전력변환장치가 정상적으로 동작하는지를 확인한다.
아) 기타 추진제어용 전력변환장치의 동작을 위하여 필요한 인터페이스 지령 신호에 대해 정상동작 여부를 확인한다.

(7) 냉각장치 시험
가. 시험조건
가) 냉각장치의 수온경로는 실제사용조건과 동일한 구조로 한다.
나) 추진제어용 전력변환장치는 동작하는 조건에서 시험한다.
다) 자연냉각방식의 추진제어용 전력변환장치는 적용되지 않는다.
나. 측정항목
가) 냉각장치 입력 전압, 전류, 주파수
나) 냉각장치에 사용된 팬 등의 회전속도
다) 풍량
라) 소음 및 운전상태

다. 시험방법
가) 냉각장치에 공급하는 전원을 정격허용범위의 최소전압, 최소주파수에서 최대전압, 최대주파수로 변동시키며 나.의 각 항목을 측정하여 이상이 없어야 한다.
나) 풍량은 KS B 6311에 의한 토크판을 이용하여 측정하며, 소음 측정은 사용된 송풍기의 종류에 따라 KS B 6361에 의하여 선정한다.

(8) 경부하시험
가. 시험조건
추진제어용 전력변환장치 부하를 연결하고 제어기를 동작시켜 파형을 확인한다.
나. 측정항목
가) 3상 전류 실험치(rms)의 크기 및 상전류
나) 추진제어용 전력변환장치 저속도 제어동작확인
다. 시험방법
가) 추진제어용 전력변환장치에 정격전압을 인가하여 시험한다.
나) 속도조절을 저속으로 하여 견인전동기의 회전상태를 확인한다.
다) 견인전동기에 입력하는 3상 전류 실험치(rms)의 크기를 측정하고 상전류가 규정에 적합한지를 확인한다.

(9) 소음시험
가. 시험조건
가) 측정단위는 대사별로 하고, 시간적으로 평균한 등가소음도 dB(A) Leq로 표기한다.
나) 소음측정시간은 5초로 하며, 필요에 따라 10초, 15초, 20초 중 하나를 선정할 수 있다.

나. 측정항목
추진제어용 전력변환장치 발생 소음

d. 시험방법
가) 추진제어용 전력변환장치의 운전상태를 변화시키며 발생소음이 최대인 운전상태를 확인 하여 그때의 소음을 측정한다.
나) 소음은 추진제어용 전력변환장치상자의 중심높이에서 수평으로 1m 떨어진 거리에서 측정한다.
다) 각 측정위치에서 기록한 음압수준은 표 1에 따라 주변 암소음에 대하여 보정한다.
라) 소음기준은 70dB이하가 되어야하며, 강제냉각방식인 경우에는 85dB이하로 한다.
마) 세부 소음규정은 KS C IEC 61287-1의 소음측정에 따른다.

표 1. 암소음에 대한 측정치의 보정

<table>
<thead>
<tr>
<th>축정값과 암소음과의 차이[dB]</th>
<th>음압 보정치[dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>4-5</td>
<td>-2</td>
</tr>
<tr>
<td>6-9</td>
<td>-1</td>
</tr>
<tr>
<td>≥10</td>
<td>0</td>
</tr>
</tbody>
</table>

(10) 온도상승시험

![그림 1. 온도상승시험 회로구성]

가. 시험조건
가) V1 : 외부 전력공급원
나) V2 : 부하로부터 발생된 전력이 컨버터에 의해 전원으로 전력을 되돌려질 수 있다.
다) 부하 : 건전전동기, 리액터/저항기, 축전지 등의 규정된 부하를 사용할 수 있다.
라) 온도계(기가온도측정 수단)는 반도체나 기타 구성품의 최대온도상승을 얻을 수 있는 위치에 장착시킨다. 강제냉각방식인 경우 냉각장치를 정상적으로 동작시키며, 자연냉각방식인 경우 열차운행조건에 해당하는 주행풍을 가하여 시험할 수 있다.
마) 부하조건은 규정된 부하 프로파일을 따른다. 지정된 운전 패턴으로 정격부하를 연
결해 각부의 온도가 포화될 때까지 운전한다.

나. 측정항목
가) 추진제어용 전력변환장치 주 소자의 온도
나) 필터 캐패시터 표면온도
다) 냉각장치의 측정점 3개소 이상
라) 게이트용 전원장치온도
마) 기타 성능확인에 필요한 부위

다. 시험방법
가) 측정항목 및 판정기준은 설계기준치를 적용한다.
나) 규정된 충분한 동작주기를 거쳐 추진제어용 전력변환장치가 온도포화에 이르면 측정항목의 규정된 측정점에서 온도측정을 수행한다.

(11) 효율시험
가. 시험조건
역행(정출력 영역), 최대 노치, 만차조건에서 시험한다.
나. 측정항목
추진제어용 전력변환장치 효율
다. 시험방법
추진제어용 전력변환장치에 정격부하를 걸어 정출력 영역인 상태에서, 최대 노치 만차조건에서 입력대 출력전력을 계측기를 이용하여 측정한다.

(12) 공급 과전압과 과도 에너지시험
가. 시험조건
가) 추진제어용 전력변환장치의 입력단을 과전압 발생장치에 연결하고 정격전압을 인가한 상태에서 시험한다.
나) 부하 및 전원의 임피던스에 따라 인가되는 파형이 영향을 끼칠 때 이에 대한 데이터를 시험에 시사하기 전에 측정하고 이를 시험전압에 반영한다.
다) 별도로 설치되는 필터회로 혹은 보호를 위한 장치가 있을 경우 이를 설치하여 시험한다.

나. 측정항목
가) 역행 시 입력 출력 전압파형
나) 회생 시 입력 출력 전압파형
다. 시험방법
τ : 과전압 지속시간(sec)
ΔU : 과전압 최고치와 정격전압의 차
ULN : 정격전압

그림 2. 교류전원의 과전압 수준

(가) 입력필터와 보호장치를 포함하여 추진제어용 전력변환장치는 정상적인 전원을 공급하는 상태에서 그림 2의 ①와 ⑤의 전압을 인가한다.
(나) 추진제어용 전력변환장치의 입력단에 ②의 전압을 인가하였을 때 정상적으로 동작할 수 있다.
(다) 추진제어용 전력변환장치의 입력단에 ⑥의 전압을 인가하였을 때 추진제어용 전력변환장치는 이 전압에 의한 손상을 받지 않아야 한다.

(13) 안전요구시험
가. 시험조건
 추진제어용 전력변환장치가 차단되었을 때 필터콘덴서의 에너지가 규정된 시간 내에 방전하는가를 확인한다.
나. 측정항목
 필터캐패시터 방전시간
다. 시험방법
 가) 주전력회로에 전원을 공급해서 정격전압을 추진제어용 전력변환장치에 공급한다.
 나) 필터캐패시터 전압이 정격전압에 도달했는지 확인한다.
 다) 주전력회로의 전원공급을 중단하고 기타 장치를 동작시켜 방전시간을 확인한다.
 라) 캐패시터 전압이 50 V이하로 방전되는 시간을 측정하여 1분 이내 방전하는 것을 시험한다.

(14) 진동시험
 시험방법 및 판정기준은 IEC 61373에 따른다.
(15) 전자파적합성
시험방법 및 판정기준은 KS C IEC 62236-3-2, IEC 62236-3-2에 따른다.
(16) 방수시험
가. 시험조건
 가) 주변온도는 0 ℃이상으로 한다.
 나) 풍속은 10 m/s 이하로 한다.
 다) 구성을 완료한 후에 실시한다.
나. 측정항목
 외합 내부로의 누수
다. 시험방법
 상세 시험방법은 KS C IEC 60529에서 규정하는 IPX5에 대한 시험에 따른다.

5.2.5.2 견인전동기
1) 적용범위
 해당 철도차량에 적용되는 견인전동기의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 참고규격

KS C IEC 60349-2: 전기 건인 철도 차량용 및 도로 차량용 회전기기 - 제2부 : 컨버터 구동형 교류 전동기의 개별 요구사항

3) 시험 구분

<table>
<thead>
<tr>
<th>시험항목</th>
<th>회전형 전동기</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>외관구조검사</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>측정시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>온도상승시험</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>특성시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>과속시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>소음시험</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>절연저항시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>내전압시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>진동시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>저항측정</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

4) 시험 항목

(1) 외관구조검사
견인전동기 구성부품의 가공, 조립 및 결선 상태와 고정자 절연 등의 적합성과 구조상 손상이나 결함여부의 확인을 목적으로 한다.

(2) 측정시험
견인전동기의 크기, 중량에 대한 적합성 여부의 확인을 목적으로 한다.

(3) 온도상승시험
견인전동기의 연속정격, 단시간 정격 및 단시간-과부하 운전 시의 각부 온도를 측정하여 허용온도상승한도에 대한 적합성 확인을 목적으로 한다.

(4) 특성시험
견인전동기의 무부하시험, 구속시험을 통하여 산출된 효율, 전력, 역울 등의 특성을 설계치와 비교하고 실부하시험 결과에 대한 적합성 확인을 목적으로 한다.

(5) 과속시험
견인전동기 최고속도 이상으로 운전 또는 구동하였을 때 회전자의 기계적 특성을 평가하여 운전속도 범위에 대한 안전성 확인을 목적으로 한다.

(6) 소음시험
견인전동기의 전운전속도 범위에 대한 발생소음을 평가하고 그 적합성 확인을 목적으로 한다.

(7) 절연저항시험
견인전동기의 절연저항 측정으로 절연의 적합성확인을 목적으로 한다.

(8) 내전압시험
견인전동기에 규정된 전압을 인가하여 절연성능 확인을 목적으로 한다.

(9) 진동시험
견인전동기를 전운전속도 범위에 대한 진동의 정도를 평가하고 그 안전성 확인을 목적으로 한다.

(10) 저항측정
견인전동기의 권선간 저항을 측정하여 권선 간의 저항 불균형 확인을 목적으로 한다.
(11) 통전내력시험
전인전동기의 정격전류에 대한 내력 확인을 목적으로 한다.

(12) 방수시험
전인전동기의 방수능력 확인을 목적으로 한다.

5) 시험 방법 및 판정기준

(1) 외관구조검사
외관 및 구조검사는 시험품이 규정된 형식을 만족하고, 명판 기재사항의 오류, 단자 구출 방향, 명판 위치, 표면처리방법 및 도장 등의 적정성을, 그리고 부품, 부속품의 누락이나, 결함, 파손, 이물질 부착, 체결부의 이완 등의 여부를 조사하여 제작 및 조립상태의 적합성을 확인하여 이상이 없어야 한다.

(2) 측정시험
측정시험은 도면에 기재되어 있는 치수와 중량을 측정하여 그 허용범위 내에서 이상이 없어야 한다.

(3) 온도상승시험
가. 시험조건

나. 측정항목

다. 시험방법

온도상승\((K) = t_2 - t_1 = \frac{R_2}{R_1}(235 + t_1) - (235 + t_a)\)

여기서, \(t_1\)은 가)항에서 측정한 권선온도\([\degree C]\)
\(R_1\)은 가)항에서 측정한 권선저항
\(t_2\)은 시험 종료 시 권선온도\([\degree C]\)
\(R_2\)은 시험 종료 시 권선 저항\((KS C IEC 60349-2 A.5에 의함)\)
tₐ은 외기온도[℃]

리) 시험 전원은 인버터에 의한 스위칭 전원을 사용하고 인버터 전원을 불가한 경우 협의 통해 정현파 전원으로 시험을 실시한다.
마) 연속정격 온도상승시험은 정격출력에서 1시간 동안의 온도변화가 2K이내로 될 때 권선의 온도와 저항을 측정하여 각 부분의 온도상승이 표 2의 허용한도를 만족해야 한다.
바) 단시간 온도상승시험은 규정된 단시간 정격출력조건에서 각 부분의 온도상승이 표 2의 허용한도를 만족하여야 한다.
사) 단시간 온도상승시험은 KS C IEC 60349-2 8.1.6항에 의해 시험을 실시하여 측정된 온도상승이 허용한도를 만족하여야 한다.
아) 견인전동기 열전도급이 상이한 부분이 있으면 각부 허용한도는 그 열연 등급에 따라 표 2를 초과하지 않아야 한다.

표 2. 연속정격 및 단시간 정격에 대한 온도상승 한도

<table>
<thead>
<tr>
<th>부 분</th>
<th>점 연 등 급</th>
</tr>
</thead>
<tbody>
<tr>
<td>고정자 권선</td>
<td>B</td>
</tr>
<tr>
<td>농형 회전자</td>
<td>130K</td>
</tr>
</tbody>
</table>

(4) 특성시험
가. 시험조건
가) 최료정수 산출에 필요한 시험을 행한 뒤 최료정수에 의하여 산정된 특성을 부하시험으로 확인한다.
나) 정현파 전압의 편차율은 10% 미만이어야 한다.
다) 스위칭 전원은 시험대상 견인전동기와 함께 사용될 인버터의 출력파형과 유사하여야 하며 필요에 따라 해당 인버터를 사용할 수 있다.

나. 측정항목
가) 견인전동기 각상의 입력 전압, 전류, 주파수, 전력, 역율
나) 견인전동기 회전속도, 부하견인력. 다만, 선형유도전동기의 경우, 회전속도에 한해 생략한다.
다) 인버터 출력 전압의 고조파 스펙트럼
다. 시험방법
가) 최초 제작된 견인전동기에 대하여 시험품을 정격조건의 정현파 전원에 의한 무부하운전, 회전 자속운전 및 저주파수 자속운전을 실시하여 최료정수를 산출하여 시험 및 특성사정 절차는 IEEE std. 112의 6.7에 의한다. 다만, 선형유도전동기의 경우에는 생략한다.
나) 시험품을 정격조건의 정현파 전원으로 운전하며, 동력계를 사용하여 슬립-토크 및 슬립-효율 등 특성을 측정하고 가)에 의한 결과로 적합성을 확인한다. 다만, 선형유도전동기의 경우에는 생략한다.
다) 동일한 견인전동기를 인버터에 의한 스위칭 전원으로 나)와 동일하게 시험하여 가)
철도차량기술기준 KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(5) 과속시험
가. 시험조건
 가) 시험이 실시되는 동안 회전자는 온도상승시험 종료 시의 온도로 유지되어야 한다.
 나) 회전자만을 가열하여 가)의 온도로 유지할 수 있는 경우 고정자와 조립하기 전에 회전자에 대해서만 실시할 수 있다.
나. 측정항목
 가) 회전자 구동 측 베어링 진동상태
 나) 회전자 회전속도
da. 시험방법
 가) 최고속도의 120% 속도로 2분간 운전하여 이상 진동 및 이상음을 발생 여부를 확인한다.
 나) 시험실시 동안 회전자 구동 측 베어링의 진동상태를 측정한다.

(6) 소음시험
가. 시험조건
 시험은 무부하 상태에서 정격속도와 최고속도에서 양회전방향에 대해 실시한다.

나. 측정항목 및 시험방법
 나) 소음한계는 암소음을 보정하여 그림 3의 기준을 만족하여야 한다. 다만, 선형유도전동기의 경우에는 그림에서 회전속도는 이동속도로 대체한다.

(7) 절연저항시험
가. 시험조건
 시험은 내전압시험 전후에 각각 실시한다.
나. 측정항목
 고정자 권선의 절연저항
da. 시험방법
 내전압 시험 전후에 고정자권선 각 상과 고정자 프레임 사이의 절연저항을 기록한다.

(8) 내전압시험
가. 시험조건
가) 내전압시험의 전원은 정현파전압, 주파수 25Hz ~ 100Hz 사이에서 실시한다. 단 선형 유도전동기의 경우에는 설계조건에 따라 시험을 실시한다.
나) 직류 내전압시험은 발주자와 신청자(제작자) 사이의 합의에 따른다.
다) 시험은 5)-(1) ~ 5)-(7)까지의 시험을 실시하여 이상이 없는 전인전동기에 대해 실시한다.

나. 측정항목
내전압시험 전, 후의 전인전동기 절연저항
다. 시행방법
가) 시험전압은 권선과 프레임 사이에 인가되며, 모든 다른 권선은 프레임에 연결한다.
나) 시험전압은 시험방법에 따라 표 3에 제시된 최고값이어야 하며, 최종 값의 1/3보다 적은 곳에서 시작하여 점진적으로 상승시킨다.
다) 최종전압에 도달하면 이 값을 60초 동안 유지해야 한다.

표 3. 내전압시험 전압

<table>
<thead>
<tr>
<th>인가 대상</th>
<th>시험전압(r.m.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>견인전동기 권선</td>
<td>교류 시험</td>
</tr>
<tr>
<td></td>
<td>2×Udc + 1000V</td>
</tr>
<tr>
<td></td>
<td>또는 2×Urpe√2 + 1000V</td>
</tr>
<tr>
<td></td>
<td>또는 Urpb√2 + 1000V</td>
</tr>
<tr>
<td>직류 시험</td>
<td>3, 4×Udc + 1700V</td>
</tr>
<tr>
<td></td>
<td>또는 2, 4×Urpe + 1700V</td>
</tr>
<tr>
<td></td>
<td>또는 1, 2×Urpb + 1700V</td>
</tr>
</tbody>
</table>

Udc : 견인전동기가 역행상태일 때 권선에 인가되는 접지에 대한 최대 평균전압
Urpe : 견인전동기가 역행상태일 때 권선에 인가되는 접지에 대한 최대 반복피크전압
Urpb : 견인전동기가 제동상태일 때 권선에 인가되는 접지에 대한 최대 반복피크전압

만일 직류 림크나 견인전동기 권선 중에서 어느 하나가 일반적인 접지기준인 Udc가 아니라면, Urpe와 Urpb는 그들 각 회로에 나타날 수 있는 접지에 대한 최고값으로 취해지며, 이 회로상의 모든 점은 접지에 연결되어야 한다.

(9) 진동시험
가. 시행조건
시험대에 장착된 견인전동기 진동시험은 운전범위 전반을 걸쳐 여러 속도에서 실시해야 한다.
나. 측정항목
가) 견인전동기 프레임 진동
나) 견인전동기 구동부 베어링 진동. 다만, 선형유도전동기의 경우에는 생략한다.
다) 견인전동기 축 진동. 다만, 선형유도전동기의 경우에는 생략한다.
다. 시행방법
가) 측정항목에 따라 진동을 측정할 수 있도록 진동측정장치를 설치한다. (IEC 34-14의 7절에 의함)
나) 견인전동기 속도 3600 rpm에 도달하는 동안 진동의 속도는 IEC 34-14의 표 1의 한
계이내에 들어야 한다.
다) 3600 rpm 이상인 경우 적용한 3600 rpm 규정 한계치에 1.5를 곱하여 평가한다. 다
만, 선험이 분전동기의 경우에는 설계조건에 따른다.
라) 시험장착대에서의 공진에 의해 한계 값을 초과하는 속력이 발생하는 경우 이산적인
운전속도와 일치하지 않으면 이를 버려야 하며, 그 속력은 속도범위 전반에 걸쳐
일반적인 한계이내여야 한다.
마) 공진이 이산적인 동작속도에서 발생하는 경우 시험은 장착배치를 교체하여 반복 실
시한다.

(10) 저항측정
가. 시험조건
완성된 견인전동기를 대상으로 한다.
나. 측정항목
 견인전동기 각 상의 저항
다. 시험방법
 측정된 저항 값이 설계치에 적합한지 확인한다.

(11) 통전내력시험
가. 시험조건
 선행유도전동기는 전원을 인가한 상태에서 측정한다.
나. 측정항목
 선행유도전동기의 외관상 변화상태
다. 시험방법
 가) 선행유도전동기에 정격전류를 1분간 통전한다.
 나) 선행유도전동기의 외관이 정격전류에 의하여 변색이나 과열, 기타 기계적 구조의
 변함이 발생하는지 확인한다.

(12) 방수시험
가. 시험조건
 가) 주변온도는 0℃이상으로 한다.
 나) 풍속은 10m/s 이하로 한다.
 다) 구성을 완료한 후에 실시한다.
나. 측정항목
 구조체 내부로의 누수
다. 시험방법
 상세 시험방법은 IEC 60529 에 따른다.

5.2.5.3 조합시험
1) 적용범위
 해당 철도차량에 적용되는 추진제어장치(추진제어용 전력변환장치와 견인전동기)를 조합하여
설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 참고규격
 (1) KS C IEC 61377:철도용 전기 설비-전기 견인용 인버터 구동 교류 전동기 및 제어 장치의
 조합 시험 방법
 (2) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구 사항
철도차량기술기준

KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

제정: 2017.8.
개정: 2018.X.X.

(3) KS C IEC 62236 시리즈:철도용 전기자기적합성

3) 시험 구분
추진제어장치 조합시험은 형식시험으로 실시한다. 다만, 회전운동이 아닌 직선운동을 하는 선형유도전동기방식 차량의 경우에는 추진제어장치 조합시험은 추진제어용 전력변환장치와 전기적으로 동반한 부하를 조합하여 시험한 이후 완성차시험에서 간신전동기의 조합시험을 실시 한다.

4) 시험 항목
(1) 운도상승시험
운영노선의 특성으로부터 주어지는 운전패턴으로 운전하며 추진제어용 전력변환장치 및 간신전동기의 각부온도를 측정함으로써 허용온도범위에 대한 안전성 확인을 목적으로 한다.

(2) 특성시험
역행 및 제동 시 추진제어용 전력변환장치의 제어패턴에 의한 간신전동기의 속도-견인력특성 및 효율 등에 관한 출력을 측정함으로써 목적한 차량의 주행성능에 대한 적합성 확인을 목적으로 한다.

(3) 보호시스템시험
입력전원의 변동범위, 전원 차단 및 투입 등의 조건을 인가하여 추진제어장치의 동작을 확인함으로써 보호장치의 안전성 확인을 목적으로 한다.

(4) 환경시험
추진제어용 전력변환장치 주위온도를 최저향용온도와 최고향용온도로하여 장상동작 여부의 확인을 목적으로 한다.

(5) 유도장애시험
추진제어장치의 동작 중 전력반도체 소자의 구동신호에 의한 노이즈를 인가하였을 때 정상 동작 여부의 확인을 목적으로 한다.

(6) 신뢰성 시험
추진제어장치의 운영조건에 대한 안전성 및 내구성 확인을 목적으로 한다.

5) 시험조건
(1) 차량에 설치되는 간신전동기, 추진제어용 전력변환장치, 주간제어기, 필터리액터 등 관련 기기를 조합하여 시험한다. 다만, 회전운동이 아닌 직선운동을 하는 선형유도전동기의 경우에는 추진제어용 전력변환장치와 전기적으로 동반한 부하를 조합하여 시험하며 간신전동기의 조합시험은 완성차에서 시험한다.

(2) 전력 케이블은 운도조건과 전기장 방향에 있어 차량에 설치되었을 경우와 거의 동등한 조건을 갖도록 배치한다. 전력케이블은 차량에 사용된 동등 이상의 것으로 한다.

(3) 조합시험 구성은 추진제어용 전력변환장치 운도상승시험의 시험조건에 의해 시험할 수 있다.

(4) 조합시험의 각 구성품은 실제 운행 시와 동일한 조건으로 난각시킨다.

(5) 시험용 전원은 운용 시 가선전원과 동일한 조건의 맥동이 포함될 수 있도록 한다.

6) 측정항목
(1) 추진제어용 전력변환장치로 입력되는 전압, 전류, 전력
(2) 주간제어기 견인력지령
(3) 간신전동기 속도
(4) 출력견인력
(5) 출력전압, 전류
(6) 효율
철도차량기술기준 KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철) 제정: 2017.8. 개정: 2018.X.X.

(7) 고조파
(8) 기타 성능확인에 필요한 항목
7) 시험방법 및 판정기준

1) 온도상승시험
가. 병렬 운전되는 견인전동기의 경우 차륜경차에 의한 부하의 최대 불균형 조건을 적용하
거나 부하량을 조절하여 최대 불균형 조건에 해당하도록 시험하며 최대 차륜경차는 차
륜경 관련 규정에 의한다.
나. 운전패턴은 운행예정인 노선에서의 영업운전조건에 해당하는 운전패턴으로 시험한다.
다. 온도측정부 및 허용온도상승 한도는 추진제어용 전력변환장치와 견인전동기의 온도상
승시험에 의한다.

2) 특성시험
규정된 견인력특성을 검증하기 위해 주어진 속도로 견인전동기를 구동시킨다. 견인력지령
은 조합시스템의 특성을 측정하기 위해 주간제어기를 조작하여 추진제어용 전력변환장치
제어기에 입력하며 각 측정항목을 측정한다.
가. 견인전동기 발열상태의 견인력특성
가) 견인전동기의 동향 회전자가 최고 온도상승에 도달한 직후 견인력특성을 측정한다.
나) 측정 가능한 최저속도에서부터 신속히 측정하며 속도를 상승시킨다.
다) 역행동작과 제동동작시 최대견인력을 측정한다.
라) 측정된 견인력은 규정된 값의 95%이상이어야 한다.
마) 견인력 특성곡선은 6측정점 이상으로 한다.
나. 견인전동기 난각상태의 견인력특성
가) 견인전동기의 운도와 외기 온도와의 차가 4K 미만으로 난각된 상태에서 견인력을
측정한다.
나) 측정 가능한 최저속도에서부터 신속히 측정하며 속도를 상승시킨다.
다) 온도변화가 거의 없는 것을 확인하기 위해 견인력측정 종료 후 견인전동기의 운도
를 측정한다.
라) 역행동작과 제동동작시 최대견인력을 측정한다.
마) 견인력은 규정된 값의 95%이상이어야 한다.
바) 견인력 특성곡선은 6측정점 이상으로 한다.
다. 전 견인력영역에서 속도시험
가) 주간제어기 견인력지령을 최대견인력이 발휘되도록 조작한다.
나) 정지 상태에서 최고속도까지 속도를 변화시키며 견인력을 측정한다.
다) 역행동작과 제동동작시 최대견인력의 1/4, 1/2, 3/4, 및 최대견인력을 측정한다.
라. 효율특성시험
가) 손실측정 시 온도상승시험의 끝에 수행한다.
나) 손실은 직류 전력입력과 기계적 출력의 측정으로부터 구한다.
다) 직류 전력입력의 측정오차한계는 ±0.6%이내여야 한다.
라) 회전형 전동기의 경우, 견인력 측정소자는 고려된 속도에서 최대 견인력의 ±0.25%
이내의 정확도를 가져야 한다. 다만, 선형유도전동기의 경우, 추력은 계산에 의하
여 산정할 수 있다.
(3) 보호시스템시험
보호시스템시험은 추진제어장치를 도시철도차량(모노레일경전철)의 성능최대부하에 해당하
는 부하조건으로 역행 및 제동모드 시 입력에너지가 최대인 속도에서 각 측정항목을 측정하여 다음의 각 시험을 최소 3회 이상 실시하였을 때 추진제어장치 동작의 이상여부를 확인한다.

가. 제어장치 전원시험
 가) 추진제어용 전력변환장치를 정상 동작시킨 상태에서 제어전원을 전력변환범위로 동작시키며 추진제어용 전력변환장치 동작의 이상여부를 확인한다.
 나) 추진제어용 전력변환장치를 정상 동작시킨 상태에서 제어전원을 중단하고 제공급하여 있을 때 추진제어용 전력변환장치의 정지 및 제가동 동작의 이상여부를 확인한다.

나. 입력전압 변동시험
 가) 추진제어장치를 정상 동작시킨 상태에서 추진제어용 전력변환장치 입력전압을 가산 전압변동범위내의 최대, 최소전압으로 급변시키며 추진제어장치의 정상동작여부를 확인한다.
 나) 추진제어용 전력변환장치 입력전압을 가산전압변동범위내의 최대 혹은 최소전압으로 기동, 타행 및 정지상태로 운전하였을 때 추진제어장치의 정상동작여부를 확인한다.

다. 정전시험
 추진제어장치를 정상 동작시킨 상태에서 추진제어용 전력변환장치 입력전압을 10ms~10s사이의 임의의 시간동안 정전시켰을 때 정전시간에 대한 추진제어장치의 정상동작여부를 확인한다.

라. 회생부하시험
 가) 6절의 각 항목에 제동 효과 혹은 과전압 제어회로의 동작상태를 추가하여 측정한다.
 나) 추진제어장치를 최대속도로 가속한 후 최대회생상태에서 회생부하를 차단하였을 때 추진제어장치의 정상동작여부를 확인한다.

(4) 환경시험
 가. 추진제어장치에 정격전압을 인가하고 부하를 연결하여 시험한다.
 나. 시험설비의 제약으로 6절의 각 항목을 측정하는 것이 불가능할 경우 추진제어용 전력변환장치 출력전압 파형을 기록한다.

d. 추진제어장치의 정상동작중 주위온도를 허용최저온도와 허용최고온도로 변화시키며 정상동작여부를 확인한다. 동작시험이 불가능할 경우 정상동작 시의 온도상승을 고려하여 주위온도를 변화시키며 시험한다.

(5) 유도장치시험
 가. 추진제어장치를 해당 도시철도차량(모노레일경전철)의 성능최대부하에 해당하는 부하조건으로 시험한다.
 나. 추진제어장치를 정지 상태에서 최대속도까지 역행 및 제동모드로 운전하여 10km/h의 속도간격으로 고조파 전류를 측정한다.
	d. 고조파 전류는 지상신호시스템의 사용주파수대별로 스펙트럼 분석기를 이용하여 측정하며 전도성 노이즈에 의한 간섭 여부를 확인한다.

(6) 신뢰성시험
 가. 추진제어장치의 추진제어용 전력변환장치와 견인전동기를 조합하여 운행예정인 노선에서의 영업운전조건의 운전패턴으로 시험한다.
 나. 신뢰성시험은 80시간 이상 연속 운전하여 각 장치에 이상이 없어야 한다.
5.2.6 보조전원장치시험

1) 적용범위
해당 철도차량에 적용되는 보조전원장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의
(1) 출력 전압
출력 단자 사이에 나타나는 가장 저차의 맥동전압의 한 주기에 판정되는 값의 평균치 또는 실효치(특정부하를 별도로 지정하지 않은 경우)
(2) 출력 전류
출력 단자 사이에서 나타나는 가장 저주파인 맥동전류의 한 주기의 평균치 또는 실효치
(3) 공급 과전압보조전원장치
입력단에 대기의 영향, 스위칭 동작, 회생제동 등의 영향에 의해 단시간 나타나는 피크 순수 전압
(4) 순간 에너지
회로 단락에 의하여 발생할 수 있는, 과도 정격에 따라 보조전원장치로 유입될 수 있는 과도 에너지

3) 참고규격
(1) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구 사항
(2) KS C IEC 61287-1:철도용 전기 설비-철도용 전력 변환 장치-제1부:특성 및 시험 방법
(3) KS C IEC 61287-2:철도 차량 차상에 설치된 전력 컨버터 - 제2부 : 추가 기술 정보

4) 시험 방법 및 판정기준
(1) 외관구조검사
보조전원장치의 조립상태, 전기 배선 등 제작상태와 전선 및 부품의 식별표시가 도면에 적합하고 구조상 손상이나 결함이부를 확인하여 이상이 없어야 한다.
(2) 측정시험
도면에 기재되어 있는 차수와 중량을 측정하여 그 허용범위 내에서 이상이 없어야 한다.
(3) 진동시험
가. 시험조건
가) 보조전원장치를 실제 사용상태와 유사한 조건으로 시험대에 설치하여 전후, 좌우 및 상하의 직교 3방향의 정파동 단진동을 임의 순서로 인가하여 시험을 실시한다.
진동 주파수 f는 1Hz와 60Hz사이로서 그 은 진폭 “2a”는 다음과 같이 주파수 f의 함수로 주어진다.

a) \(1 < f \leq 10 \text{Hz} \)인 경우 \(2a = 50/f \)
\(10 < f \leq 60 \text{Hz} \)인 경우 \(2a = 500/f \)
나) 시험기의 제약으로 단독시험이 곤란한 경우, 구성품별로 시험을 실시할 수 있으며, IEC 61373 규격에 따른다.

나. 측정항목
가) 보조전원장치 상자 상면 모서리 부근
나) 보조전원장치 상자 하면 모서리 부근
다) 전력반도체 스택
라) 기타 성능확인을 위하여 필요한 위치
d) 시험방법 판정기준
적용규격 또는 동등이상의 규격에 정의된 방법 및 판정기준에 따른다.
(4) 소음시험
가. 시험조건
가) 측정단위는 데시벨로 하고, 시간적으로 평균한 등가소음도 dB(A) Leq로 표기한다.
나) 소음측정시간은 5초로 하며, 필요에 따라 10초, 15초, 20초 중 하나를 선택할 수 있다.
나. 측정항목
보조전원장치 발생 소음
d. 시험방법 및 판정기준
적용규격 또는 동등이상의 규격에 정의된 방법 및 판정기준에 따른다.
(5) 기동 및 정지시험
가. 시험조건
가) 별도로 정의되어 있지 않은 경우 부하는 0%, 50%, 100% 및 단시간 과부하정격으로 한다.
나) 시험방법에 별도로 정의되어 있지 않은 경우, 입력전압은 정격전압으로 한다.
다) 3회 반복 실시한다.
나. 측정항목
가) 기동 씽퀀스
나) 입력전압 다) 제어전원전압 라) 출력전압 마) 전력반도체 구동신호 바) 회로부품의 손상여부
d. 시험방법
가) 기동 씽퀀스 시험
(가) 정격전압을 인가한다.
(나) 무부하에서 주회로차단기를 투입하여 정상적으로 보조전원장치가 기동하는지 확인한다.
(다) 기동에 이상이 있어서는 안된다.
나) 기동시험
(가) 입력전압을 정격변동범위의 최저전압, 정격전압, 최고전압으로 하여 각각 시험 한다.
(나) 장치를 온/오프하는데 소요되는 시간은 신청자(제작자)와 협의하여 정한다.
(다) 기동에 이상이 있어서는 안된다.
다) 제어전원전압시험
(가) 제어전원을 정격변동범위의 최저, 정격, 최고로 하여 시험한다.
(나) 기동에 이상이 있어서는 안된다.
라) 정지시험
(가) 입력전압을 정격변동범위의 최저, 정격, 최고로 하여 시험한다.
(나) 입력전원과 제어전원을 차단시켰을 때 보조전원장치가 정지하는지 각각 확인한다.
(다) 정지에 이상이 있어서는 안된다.
(라) 정지된 보조전원장치를 다시 기동시켜 이상이 있는지 확인한다.
마) 고장시 정지시험
 (가) 입력전압을 정격변동범위의 최저전압, 정격전압, 최고전압으로 하여 각각 시험 한다.
 (나) 보조전원장치의 동작 중 고장 신호를 강제로 발생시키거나 등가신호를 발생시킨다.
 (다) 보조전원장치가 정지했는지를 확인한다.
바) 재기동시험
 (가) 보조전원장치에 대한 고장신호가 제거되었을 때 정상적으로 기동하는지 확인한다.
 (나) 기동에 이상이 있어서는 안된다.
사) 회로부품의 손상 여부
 시험을 하는 동안 부품의 손상이 있어서는 안된다.
(6) 경부하 시험
 가. 시험조건
 정격 전압을 인가하고 부하전류를 가변할 수 있도록 한다.
 나. 측정항목
 가) 출력 전압(교류/직류)과 주파수
 나) 제어 신호와 지연시간
 다) 각 상의 출력 순서
 다. 시험방법
 가) 부하를 병렬로 연결한 상태에서 보조전원장치를 동작시킨다.
 나) 출력 전압과 주파수, 구동회로 및 제어회로의 제어신호와 지연시간을 관찰하여 동작 상태를 확인한다.
 다) 교류 출력 단자의 상회전방향을 측정하여 상의 순서가 단자의 표시와 일치한지 확인 한다.
 라) 시험을 실시하기 위한 부하는 교류 견인전동기 혹은 R-L 부하를 사용할 수 있다.
(7) 부하 맥동 시험
 가. 시험조건
 가) 정격전압
 나) 100% 부하
 나. 측정항목
 가) 출력 직류전압의 평균치 및 실험치
 나) 출력 직류전압의 최대치 및 최소치
 다) 출력 직류전압의 맥동율
 다. 시험방법
 가) 부하를 병렬로 연결한 상태에서 보조전원장치를 동작시킨다.
 나) 충분한 정밀도를 갖는 측정기를 사용하여 직류 출력을 측정한다.
 다) 부하 전류의 맥동 성분은 대역 통과 필터를 사용하여 주요부를 선택하여 확인한다.
(8) 효율시험
 가. 시험조건
 가) 정격전압
 나) 100% 부하(부하 형태는 신청자(제작자)와 협의에 의한다.)
(9) 부하급변시험
가. 시험조건
가) 단시간차단시험
 (가) 정격 용량의 저항부하를 보조전원장치 출력에 연결하여 시험한다.
 (나) 단락회로 접촉기를 부하와 직렬로 연결한다.
 (다) 정격전압을 인가한다.
나) 단락회로시험
 (가) 시험전압은 정격의 110%에서 실시한다.
 (나) 단락회로 접촉기는 부하와 병렬로 연결한다.
다) 부하급변시험
 (가) 시험전압은 최저, 정격, 최고로 하여 실시한다.
 (나) 부하는 0, 50%, 100%로 한다.
 (다) 전압의 상승 및 하강시간은 시험설비가 허용하는 최단시간으로 한다.
나. 측정항목
가) 단시간차단시험
 (가) 출력전압파형
 (나) 변환기의 손상여부
 (다) 소요 시간
나) 단락회로시험
 (가) 보호장치 동작상태, 퓨즈의 용단여부
 (나) 소자 및 변환기의 고장 여부
 (다) 출력전류파형
 (라) 보호장치 동작 여부
다) 부하급변시험: 출력전압파형
다. 시험방법
가) 단시간차단시험
 (가) 보조전원장치는 부하를 연결한 상태에서 정상적으로 동작시킨다.
 (나) 보조전원장치의 동작중 단락회로 접촉기를 단시간 동작시켜 부하를 차단시킨다.
 (다) 출력전압파형과 시간을 기록하고 변환기의 손상여부를 확인한다.
나) 단락회로시험
 (가) 보조전원장치에 부하를 연결한 상태에서 동작시킨다.
 (나) 부하전류가 1분 동안 저항부하에 흐른 후 접촉기를 동작시켜 부하를 단락한다.
 (다) 시험의 내용은 오실로스코프로 기록한다.
 (라) 고장전류가 검출되고 보호장치와 그 장치가 동작하도록 규정된 전체 시간 내에 고장제가 정차에 의하여 해제되는지를 확인한다.
 (마) 퓨즈와 평활리액터의 상태를 확인한다. (제작자가 제시한 사양에 따라 장치의 일부라 생각되는 임의의 평활리액터에 대하여 회로가 단락될 수 있다. 후자의 경우에 회로가 퓨즈에 의하여 끊어지는 것은 가능하다.)
(바) 손상된 소자가 있는지 확인한다.
(사) 차단 후 일정 시간이 흐르 다음 자동으로 재시동되는 지를 확인한다.
다) 부하급변시험
(가) 각각의 전압에서 부하를 0%→50%→100%, 100%→50%→0%로 변경시킨다.
(나) 출력전압을 확인하여 크기, 안정시간을 확인하고 안정된 후 주파수, 왜율을 확인한다.

(10) 전압변동시험
가. 시험조건
 가) 최소 및 최대 입력 전압
 나) 가변부하
나. 측정항목
 출력전압의 크기, 왜율, 주파수
다. 시험방법
 가) 최소 입력 전압에서의 시험
 최소 입력 전압과 최대 출력 전류로 시험하여 출력전압에 이상이 없어야 한다.
 나) 최대 입력 전압에서의 시험
 최대 입력 전압과 최소 출력 전류로 시험하여 출력전압에 이상이 없어야 한다.
다) 입력전압의 변동시험
 정격 부하에 대하여 입력전압을 최소입력전압과 최대입력전압 사이로 변동하였을 때 출력전압에 이상이 없어야 한다.

(11) 보호회로동작시험
가. 시험조건
 가) 보조전원장치에 정격제어전압을 인가하고 부하상태에서 실시한다.
 나) 제어전원은 정격제어전압 변동범위에서 최소전압조건과 최대전압을 각각 시험한다.
나. 측정항목
 가) 입력저전압, 입력과전압, 출력과전압, 출력저전압, 과부하
 나) 기타 보호기능이 필요한 자치 및 항목에 대하여는 추가 실시할 수 있다.
다. 시험방법
 가) 직류전압검출기, 교류전압검출기 등 장치에 설치되어 검출용으로 사용하는 검출기를 사용할 수 있다.
 나) 각각의 가상된 고장상황에 대하여 보호장치는 보조전원장치를 안전하게 보호하도록 하는 기능을 만족하는지 확인한다.
 다) 과부하시험은 가능한 최대 부하로 하며, 시험장치의 설비 상태에 따라 변경할 수 있다.

(12) 전자파적합성시험
가. 시험조건
 가) 보조전원장치에 정격제어전압을 인가한다.
 나) 주변환경은 운행시 발생할 수 없는 노이즈 등의 간섭으로 측정결과에 영향을 주는 일이 없어야 한다.
나. 측정항목
 가) 제어회로의 이상 동작
 나) 동작시퀀스
다) 전력반도체 구동시험
라) 기타 필요하다고 판단되는 항목에 대하여 추가하여 측정할 수 있다.

da. 시험방법
가) 상세 시험방법은 KS C IEC 62236-3-2 규격에 따른다.
나) 시험중 마항의 기동 및 정지시험을 실시하여 이상이 없어야 한다. 다만, 제어전원
만 인가하여 기능을 확인한다.

(13) 과전압과 과도 에너지 시험
가. 시험조건
가) 보조전원장치의 입력단을 과전압 발생장치에 연결하고 정격전압을 인가한 상태에서
시험한다.
나) 부하 및 전원의 임피던스에 따라 인가되는 파형이 영향을 받기 때문에 이에 대한 데이터를
시험이 시작되기 전에 측정하고 이를 시험전압에 반영한다.
다) 기타 필요하다고 판단되는 사항을 추가할 수 있다.

나. 측정항목
가) 입력 조건
나) 장치의 손상 여부
다) 동작상태

da. 시험방법
가) 입력필터와 보호장치를 포함하여 보조전원장치는 정상적인 전원을 공급하는 상태에서
그림 1의 ①과 ②의 전압을 인가한다.
나) 보조전원장치의 입력단에 ①의 전압을 인가하도록 하며 이때 보조전원장치는 정상
적으로 동작을 해야 한다.
다) 보조전원장치의 입력단에 ②의 전압을 인가하도록 하며 이때 보조전원장치는 이 전
압에 의한 손상을 받지 않지 않아야 한다.
라) 신청자(제작자)와 협의에 따라 규정한 요구에 대해 변환기의 성능을 증명하는 제작
자가 제출한 계산으로 시험을 대체할 수 있다.

\[
\tau : \text{ 과전압 지속시간 (sec) }
\]
\[\Delta U : \text{과전압 최고치와 정격전압의 차} \]
\[U_{LN} : \text{정격전압} \]

그림 1. 직류 공급선의 과전압 수준

(14) 온도 상승 시험
가. 시험조건
나) 보조전원장치에 정격전압과 정격부하를 인가한다.
다) 대기조건은 주행중의 냉각상태를 고려하여 시험을 하도록 하며, 별다른 협의사항이 없다면 측정지점에서 1m의 거리에서 3m/s의 풍속을 발생하여 시험하도록 한다.
라) 시험조건이 시험을 하기에 충분하지 않을 경우, 보조전원장치는 완성된 차에서 시험할 수 있다.

나. 측정항목
가) 보조전원장치 주 소자의 온도
나) 캐패시터 표면온도
다) 게이트용 전원장치온도
라) 기타 성능확인에 필요한 부위

다. 시험방법
가) 보조전원장치의 전류는 신청자(제작자)와 협의하여, 동작책무에 따라 결정되어야 하며 동작책무가 규정되지 않으면 전류의 세기와 지속시간은 연속장각으로 실시한다.
나) 온도수(D, 기타 온도측정 수단)는 반도체나 기타 구성품의 최대온도상승을 얻을 수 있는 위치에 정착시킨다. 모든 시험을 하는 동안과 시험 후에 주변온도의 값은 보조전원장치 흡입구에서 냉각공기의 온도로 한다.
다) 온도 측정에는 저항법, 온도계법, 열감용지 등을 적용하여 온도상승을 가장 정확하게 측정할 수 있는 방법으로 측정한다.
라) 온도상승은 측정된 값으로부터 실제 주변온도를 한산하여 결정한다.
마) 온도상승 계산식 최고 발열 스위칭 장치, 다이오드 또는 다른 부품의 온도는 지정된 위치에서 온도관계를 넘지 않아야 한다.
바) 얻어진 결과는 실차 운전 후 증명될 수 있다. 이 시험을 하는 동안 차량은 안정된 온도에 도달할 만큼 총분히 긴 규정된 동작책무로 충분한 시간동안 동작해야 한다.
사) 기타 세부 측정항목 및 판정기준은 설계기준지를 적용한다.

(15) 절연저항시험
가. 시험조건
나) 절연저항시험은 4)-(16)의 내전압시험 전후에 각각 시험한다.
다) 보조전원장치 내부의 전기적인 회로는 전압별로 고압회로, 저압(제어회로)회로로 구분하여 시험전압이 인가되도록 서로 연결하여 시험한다.
라) 시험회로에 연결되지 않은 구성품이나 세부부품(예로 제어회로, 건인전등기 및 팬)은 절연저항시험동안 접지시켜 시험전압으로부터 보호되도록 한다.

나. 측정항목
가) 고압회로 - 접지
나) 저압(제어)회로 - 접지
다) 고압회로 - 저압(제어)회로

다. 시험방법

가) 고압회로에는 직류 1000V 절연저항계를 저압 및 제어회로에는 직류 500V 절연저항계를 사용한다.
나) 결과는 다음을 만족해야 하며 내전압시험 전후에 측정한 값에 현저한 변화가 없어야 한다.

고압회로 - 접지(100MΩ 이상)
저압(제어)회로 - 접지(30MΩ 이상)
고압회로 - 저압(제어)회로(30MΩ 이상)

(16) 내전압시험

가. 시험조건

가) 내전압시험은 실시하기 전후에 "(15) 절연저항시험"을 반드시 실시하여 절연저항에 이상이 없음을 확인하여야 한다.
나) 보조전원장치 내부의 전기적인 회로는 전압별로 고압회로, 저압(제어회로)회로로 구분하여 시험전압이 인가되도록 서로 연결하여 시험한다.
다) 시험회로에 연결되지 않은 구성품이나 세부품(예로 제어회로, 견인전동기 및 펜)은 절연저항시험동안 접지시켜 시험전압으로부터 보호되도록 한다.

나. 측정항목

가) 전기적으로 절연된 통전부
나) 접지와 통전부
다) 기타 성능확인을 위한 필요부위(시험하되 가)와나)의 시험 외에 대하여는 시험전압을 장치에 무리가 없는 범위에서 설정하도록 한다.

다. 시험방법

가) 집단으로 설치되는 장치는 조합하여 연결된상태에서 실시할 수 있다.
나) 주파수는 상용주파수, 시간은 1분으로 한다.
다) U는 정격전압 이며, 회로의 접지에 영구적으로 연결되는 중성점이 포함되어 있으면 U는 공급전압의 1/2로 한다.
라) 상온에서 10초 이상 연속으로 전압을 상승시켜 전시시험전압에 도달시키고 1분간 유지한다. 이때, 시험되지 않는 다른 회로는 접지되어야 한다.
마) 시험전압은 실험치(r.m.s) 값으로 다음과 같이 정해진다.

\[U_p = \frac{2U_m}{\sqrt{2}} + 1000V \]

여기에서 공정전압 \(U_m \)은 내전압을 인가하는 두 단자사이의 최소 반복 피크 동작전압이다. 어떤 이유로든 이 시험을 반복할 필요가 있는 경우 두 번째 시험의 전압값은 절연에 미치는 영향을 고려하여 시험전압 \(U_p \)의 85% 정도로 감소하여 실시한다.

(17) 방수시험

가. 시험조건

가) 주변온도는 0℃이상으로 한다.
나) 풍속은 10m/s 이하로 한다.
다) 구성을 완료한 후에 실시한다.

나. 측정항목
외관 내부로의 누수
다. 시험방법
상세 시험방법은 IEC 60529에 따른다.
(18) 환경시험
가. 시험조건
가) 정격전압상태에서 실시한다.
나) 부하의 형태와 용량은 신청자(제작자)와 협의하여 결정한다.

나. 측정항목
출력 전압, 전류, 역율
다. 시험방법
가) 보조전원장치 외기의 온도가 허용최고온도로 안정된 후에 전원을 투입하여 장치의 동작에 이상이 있는지를 확인한다.
나) 가)의 시험 후 온도를 서서히 떨어뜨려 최저허용온도로 낮춘 후 온도가 안정된 후에 전원을 투입하여 장치의 동작에 이상이 있는지를 확인한다.
다) 가)와나)는 순서를 바꾸어 실시해도 무방하다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 제품의 형식명 및 제조번호
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 사용한 필터특성
(5) 측정항목별 결과
(6) 기타 특이사항

5.2.7 차상신호장치시험
1) 적용범위
해당 철도차량에 적용되는 차상신호장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.
2) 용어정의
(1) 시험품 : 시험대상 차상신호장치
(2) 성능검사 : 환경시험 동안이나 후에 실시하는 전기적 측정 및 기능검사
3) 시험의 종류 및 목적
(1) 외관 구조 및 차수 검사 : 외관 구조 및 차수 검사는 시험품 구조의 건고성과 규격 만족 여부의 확인을 목적으로 한다.
(2) 운용환경시험 : 시험품이 운용환경에 대해 요구되는 성능이 만족되는지 여부를 시험하는 항목으로 전원 변동 시험, 저온 시험, 고온 시험, 고온·고습 시험, 온도 사이클링 시험, 과전압시험, 절연 시험, 진동 및 충격 시험, 전자파시험을 포함한다.
(3) 조합 시험 : 시험품의 구성장치 간 통신과 시험품과 연계되는 장치들과의 통신이 요구되는 성능을 만족하는지에 대한 적합성을 시험하는 항목이다.
4) 시험 방법 및 판정기준
 (1) 일반사항
 가. 시험품의 전기적 측정은 측정기에 의해 측정하는 것을 원칙으로 하지만, 기능상 같은 동작을 확인할 수 있다고 판단되는 경우는 발광 다이오드 등의 시각적 검사에 의한 시험으로 대신할 수 있다.
 나. 시험품의 성능검사는 시험품의 모든 기능을 확인하는 것을 원칙으로 하지만, 각 시험 항목에 따라 대표적인 몇 가지 기능검사로 대신할 수 있다.
 다. 시험방법 및 기준을 적용할 수 없는 부득이한 경우 해당 구성품에 대해서만 변경하여 적용할 수 있으며, 이러한 변경사항에 대해서는 변경내용과 정확한 근거를 상세하게 기술하여야 한다.
 (2) 시험방법 및 판정기준
 가. 외관 구조 및 처수검사
 가) 외관 상태가 유해한 흔이나 부식상태 등이 있는 지의 여부를 윤안으로 검사했을 때 이상이 없어야 한다.
 나) 시험품의 배선상태, 결선상태, 부품의 설치상태 등을 윤안 또는 필요한 도구를 사용하여 규정된 설계도면과 비교하여 검사했을 때 이상이 없어야 한다.
 다) 시험품의 주요 처수가 허용범위를 초과하는 부분 등이 있는 지의 여부를 필요한 도구를 사용하여 규정된 설계도면과 비교하여 검사했을 때 이상이 없어야 한다.
 나. 운용환경시험
 운용환경시험은 전자제어기기 시험규격서(부품시험)에 따른다.
 다. 조합 시험
 가) 관련장치들과 연결되는 시험품의 입력출력 단자들의 기능을 확인하기 위하여 파형 발생기 또는 모의시험장치를 이용하여 요구되는 신호를 인가하고, 인가된 신호에 대한 결과를 측정기 또는 모의시험장치로 측정하였을 때 이상이 없어야 한다.
 나) 시험품은 통신단자에 해당장치를 연결하여 기능을 확인하였을 때 이상이 없어야 한다.
 이 때 해당장치는 같은 기능을 하는 측정기 또는 모의시험장치로 대신할 수 있다.
 다) 입력출력 단자 및 통신 단자의 이상여부를 기록한다.

5) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 시험품의 구성 상태 및 시험품
 (3) 사용한 시험기의 종류·형식 및 구성도
 (4) 측정항목별 결과
 (5) 기타 특이사항

5.2.8 종합제어장치시험
1) 적용범위
 해당 철도차량에 적용되는 종합제어장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다. 다만, 종합제어장치가 독립적으로 설치되는 경우에 한한다.
2) 용어정의
 (1) 시험품 : 시험대상 종합제어장치
 (2) 버스트 : 고정된 시간간격 동안 발생하는 비정상적인 반복 패스
(3) 성능검사 : 환경시험 동안이나 후에 실시하는 전기적 측정 및 기능검사

3) 참고규격
 (1) KS C IEC 60571:철도용 전기기기의 개별 요구 사항
 (2) KS C IEC 61375-1:철도용 전기설비-트레인 버스-제1부 : 철도용 통신 네트워크
 (3) KS C IEC 62280-1:철도용 전기설비의 전기적 측정 및 신호 처리 시스템-제1부:폐쇄형 전송 시스템에서의 안전 관련 통신
 (4) KS C IEC 62280-2:철도용 전기설비의 전기적 측정 및 신호 처리 시스템-제2부:개방형 전송 시스템에서의 안전 관련 통신

4) 시험 방법 및 판정기준
 (1) 구성품시험
 전자파적합성시험, 온도시험, 진동・충격시험은 전자제어기기 시험규격서(부품시험)에 따른다.
 (2) 기능 및 조합시험
 가. 관련장치들과 연결되는 시험품의 입출력 단자들의 기능을 확인하기 위하여 파형 발생기 또는 모의시험장치를 이용하여 요구되는 신호를 인가하고, 인가된 신호에 대한 결과를 측정하기 위한 모의시험장치로 측정하였을 때 이상이 없어야 한다.
 나. 시험품은 통신단자에 해당장치를 연결하여 기능을 확인하였을 때 이상이 없어야 한다.
 이와 해당장치는 같은 기능을 하는 측정기 또는 모의시험장치로 대신할 수 있다.
 다. 입출력 단자 및 통신 단자의 이상여부를 기록한다.

5) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 제품의 형식명 및 제조번호
 (3) 시험기의 종류・형식・설치위치 및 구성도
 (4) 측정항목별 결과
 (5) 기타 특이사항

5.2.9 제동장치시험
1) 적용범위
 해당 철도차량에 적용되는 제동장치 특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
 (1) 제동제어유니트(BCU) : 제동지령을 받아 제동제어 목표량에 접근하도록 제동압력을 제어하기 위한 제동제어유니트
 (2) 공기압력 센서 : 전공변환밸브의 작동 공기압력(AC) 및 공기제동장치에서 출력되는 제동공기압력(BC)을 전기적인 신호로 변화하기 위한 센서
 (3) 차륜활주방지장치 : 제동으로 인한 차륜의 활성 방지를 위한 목적으로, 제어 유니트가 차륜의 속도를 감지하여 기준 차량 속도와 일정 속도 이상의 차이가 발생할 경우 긴급히 제동실린더의 제동압력을 배기시켜 차륜 고착을 폐어주는 장치

3) 참고규격
 (1) IEC 62313:Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
철도차량기술기준

(2) KS A 0006:시험장소의 표준상태
(3) KS C IEC 61133:전기 견인 및 앤진 견인 철도 차량의 사용 전 완성차 시험 방법.
(4) KS B 5305:브루돈관 압력계
(5) KS C 0704:제어기기의 절연거리, 절연저항 및 내전압
(6) KS R 9144:철도차량용 전자기기의 시험통칙
(7) KS R 9146:철도차량용 전자기기의 시험통칙
(8) KS R 9225:철도차량용 공기압축기 – 시험방법
(9) KS R 9244:공기호스연결기
(10) KS R 9245:공기호스연결기 마개
(11) EN 14531-1:Railway applications. Methods for calculation of stopping distances, slowing distances and immobilization braking. General algorithms
(12) EN 14531-6:Railway applications. Methods for calculation of stopping and slowing distances and immobilization braking. Step by step calculations for train sets or single vehicles
(13) EN 15663:Railway applications. Definition of vehicle reference masses
(14) EN 14198:Railway applications. Braking. Requirements for the brake systems of trains hauled by a locomotive
(15) EN 15179:Railway applications. Braking. Requirements for the brake system of coaches
(16) EN 15220:Railway applications. Brake indicators. Pneumatically operated brake indicators
(17) EN 15355:Railway applications. Braking. Distributor valves and distributor-isolating devices
(18) EN 15595:Railway applications. Braking. Wheel slide protection
(19) EN 15611:Railway applications. Braking. Relay valves
(20) EN 15612:Railway applications. Braking. Brake pipe accelerator valve
(21) EN 15625:Railway applications. Braking. Automatic variable load sensing devices
(22) KS C IEC 62279:철도용 전기설비의 통신 및 신호처리 시스템과 제어 및 보호 시스템에 관한 소프트웨어
(24) UIC 544-1:Brakes – Braking power
(25) UIC 544-2:Conditions to be observed by the dynamic brake of locomotives and motor coaches so that the extra braking effort produced can be taken into account for the calculation of the braked-weight
(26) UIC 540:Brakes – Air Brakes for freight trains and passenger trains
(27) UIC 541-5:Brakes – Electropneumatic brake (ep brake) – Electropneumatic emergency brake override (EBO)
(28) EN 13452:Braking-Mass transit brake systems (Part 1: Performance requirement)
4) 시험 방법
(1) 시험종류
가. 공기누설시험(공기제동에 한하여 실시한다)
나. 성능시험
다. 절연저항시험
라. 내전압시험
마. 진동시험
바. 충격시험
사. 온도시험
(2) 시험방법
가. 공기누설시험 (공기제동에 한하여 실시한다)
가) 공기공급 시 누설시험 : 공기제동장치에 공급압력을 공급하고 누설이 있는지 확인 한다.
나) 동작 시 누설시험 : 공기제동장치에 최대상용제동,비상제동을 인가하고 누설이 있 는지 확인한다.
나. 성능시험
제동장치에 포함되어 있는 모든 구성부품은 적용되는 규격서에 규정된 필요조건이 확인 되어야 한다. 제동장치의 필요조건에 만족하게 될 때까지 시험대에서 다음의 상호관련 적용시험을 행한다.
가) 상용제동시험 : 제동장치에서 상용제동을 인가하고 제동압력을 측정한다.
나) 비상제동시험 : 제동장치에 비상제동을 인가하고 제동압력을 측정한다.
다) 제동불완해시험 : 제동완해상태에서 BC 배관에 0bar로부터 제동압력을 공급하였을 경우 설정압력에서 제동불완해를 검지하는지 확인한다.
라) 비상제동 용량시험
마) 강제완해 시험 : 제동완해검지 후 강제완해 신호를 인가하면 강제완해밸브에 의 하여 BC 압력이 신속히 배기되어야 한다.
다. 절연저항시험 : 철도차량의 절연저항시험(KS C 0704)에 의거하여 캐논 플러그의 핀과 프레임 사이를 직류 500 V 메가오姆테스터(MEGA-OHM TESTER)로 저항을 측정한다.
라. 내전압시험 : 철도차량의 내전압시험(KS C 0704)에 의거하여 캐논 플러그의 핀과 프레 임 사이를 교류 1500 V의 상용주파수로 1분간 가압한다.
마. 진동시험 : KS R 9144 철도차량부품의 진동시험 방법(2B) 또는 IEC 61373에 준하여 시 험 한 후 성능시험을 하였을 때 제품에 이상이 없어야 한다.
바. 충격시험 : KS R 9146 철도차량부품의 충격시험 방법 또는 IEC 61373에 준하여 시험 한 후 성능시험을 하였을 때 제품에 이상이 없어야 한다.
사. 온도시험 : KS R 9213 고온 및 저온 시험방법의 제H8종 고온시험, 제L9종 저온시험에 준하여 방치 후 항온조에서 깨내어 상온에서 방치시험을 하였을 때 이상이 없어야 하며, 제H8종 고온시험, 제L9종 저온시험에 준하여 방치 상태에서 동작시험을 하였을 때 이상이 없어야 한다. 다만, 차량운행 조건이 상기 기준과 상이하고, 발주자가 동 의하는 경우에는 온도시험 범위를 달리 할 수 있다.
5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
5.2.10 냉난방·환기장치시험

1) 적용범위
해당 철도차량에 적용되는 냉난방환기장치의 설계적합성 또는 형식동등성을시험으로 입증하는 경우에 적용한다.

2) 참고규격
(1) IEC 6057:철도용 전자기기의 개별 요구 사항
(2) KS C IEC 62236-1, IEC 62236-1:철도용 전기 자기 적합성 - 제 1 부 : 일반 사항
(3) KS C IEC 62236-3-2, IEC 62236-3-2:철도용 전기 자기 적합성 - 제 3 - 2 부 : 철도 차량 - 장치
(4) KS C IEC 60068-2-1 : 환경 시험 - 제2-1부 : 시험-시험 A : 내한성시험
(5) KS C 0221:환경 시험 방법 - 전기. 전자- 고온 (내열성) 시험 방법
(6) KS C 0225:환경 시험 방법 - 전기. 전자- 온도 변화 시험 방법
(7) KS C 0227:환경 시험 방법 - 전기. 전자- 운습도 사이클 (12+12시간 사이클) 시험 방법
(8) KS C IEC 61373:철도 차량 설비의 충격 및 진동 시험 방법
(9) EN 14813-1:Railway applications. Air conditioning for driving cabs. Comfort parameters
(10) EN 14813-2:Railway applications. Air conditioning for driving cabs. Type tests
(11) EN 14750-1:Railway applications. Air conditioning for urban and suburban rolling stock-Part 1 : Comfort parameters
(12) EN 14750-2:Railway applications. Air conditioning for urban and suburban rolling stock-Part 1 : Type tests

3) 시험방법 (세부 시험항목은 해당 철도차량의 설계특성에 따라 선택적으로 적용한다)
(1) 전원전압변동시험
정격 전압의 80%에서 기동시켰을 때 압축기 및 각 전동기는 회전자의 위치에 관계없이 회전하여야 한다.
(2) 절연저항시험
(3) 내전압시험
(4) 냉방능력시험
1시간 이상 연속 운전하여 응축기 입구의 건구 온도와 증발기 입구, 출구의 건습구 온도를 측정하고, 이 때의 송풍량을 측정하여 냉방능력 산출하여 다음식에 따라 산출하여 그 능력은 정격능력의 95% 이상이어야 한다.

냉방능력(kW)= 증발기 통과 공기의 엔탈피 (kJ/kg) - 증발기 출구 공기의 엔탈피 (kJ/kg)
(단, 건구온도, 상태습도, 정격능력, 증발기 통과 풍량은 해당차량의 설계특성에 따른다.)

(5) 난방능력시험
 가. 난방장치 난방능력 시험
 난방능력은 최대 난방시의 소비전력을 측정하여 확인한다.
 나. 난방히터 성능시험
 난방히터의 정격전압, 정격용량, 정격전류, 정격저항을 확인한다. 또한 난방히터에 대해 절연저항, 내전압, 소비전력, 온도특성, 저항특성, 부하, 내습, 접착강도, 전열선편 중 등을 확인한다.

(6) 소음시험
 주위의 압소음이 측정하고자 하는 장치의 소음 측정값 보다 최소한 10dB(A) 이상 낮은 조건에서 측정한다.

(7) 냉매압력 및 누설시험
 가. 냉매압력시험
 냉매능력 측정시험 조건에서 냉매 계통의 고압측 및 저압측에 압력계를 부착하여 20분 이상 연속 운전 후 압력을 측정한다.
 나. 냉매누설시험
 정지 및 기동상태에서 각 배관 응집부위 및 연결부위의 누설여부를 확인한다.

(8) 송풍계통 기밀시험
 공기 입출구 및 신선공기 흡입구 등을 기밀 처리한 후 장치 내부를 가압하여 임의의 압력 까지 감압되는 시간을 측정한다.

(9) 열교환기 내압시험
 열교환기에 임의의 공기압 또는 가스압을 5분 이상 가압하여 누설 또는 변형이 없어야 한다.

(10) 응축수 밸브작동시험
 응축수 밸브 등을 작동시켜 작동상태의 이상유무를 확인한다.

(11) 안전장치 작동시험
 가. 안전장치 작동시험
 난방장치 전열방지용 안전장치는 단품으로 시험하되 인위적으로 온도를 상승시켜 Setting 온도±10℃ 범위 내에서 작동하는지를 확인한다.
 나. 덱트내 압력감지 시험(풍압스위치)
 증발기팬을 가동시키고 풍압스위치의 접점을 검사한다. 증발기팬을 정지시키고 풍압스위치의 접점을 검사하여 이상이 없어야 한다.
 다. 필터 성능시험
 라. 화재안전시험
 화재안전(3.2.4)에 따라 실시한다.
 마. 기타 재료의 난연성능

(12) 환경시험(제어기) : 전자제어기기시험(5.1.9)에 따른다.

(13) 진동시험

(14) 충격시험

(15) 조합시험
 가. 동력차용 공기 조화 장치 조합시험
 조합시험은 동일한 기능을 갖는 모의배전반(제어기 포함)과 공기조화장치를 조합하여 상온에서 냉방, 난방, 팬 및 펜퍼시험 등을 수행하여 입출력을 확인한다.
나. 부수차(제어차 포함)용 공기조화 장치 조합 시험
조합시험은 동일한 기능을 갖는 모의배전반(제어기 포함)과 공기조화장치를 조합하여 상온에서 냉방, 난방, 팬 및 댐퍼시험을 등을 수행하여 입출력을 확인한다.
다. 소비전력 시험
냉방능력 허용조건에서 운전하고 그 때의 소비전력을 측정한다.
라. 소비전류 시험
냉방능력 허용조건에서 운전하고 그 때의 소비전력을 측정한다.
마. 감속 시험
정격전압에서 기동시키고 난 후 입력전압을 정격전압의 70%까지 감소시켜 시험하되 정지되지 않아야 한다.
바. 권선온도 상승시험
냉방능력 허용조건에서 운전하고 전동기의 권선온도상승을 측정하여 증발기 및 응축기 팬 모터의 권선에 온도 감지센서를 부착시켜 측정한다.

4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기상조건
(2) 피시험체 상태 및 고유번호
(3) 적용규격
(4) 시험방법
(5) 시험기 교정상태
(6) 시험기의 종류형식-설치위치 및 구성도
(7) 측정항목별 결과
(8) 기타 특이사항

5.2.11 출입문시험
1) 적용범위
해당 철도차량에 적용되는 출입문의 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용한다.
2) 참고규격
(1) KS C IEC 60571:철도용 전자기기의 개별 요구 사항
(2) KS C IEC 62236-1:철도용 전기 자기 적합성 - 제 1 부 : 일반 사항
(3) KS C IEC 62236-3-2:철도용 전기 자기 적합성 - 제 3 - 2 부 : 철도 차량 - 장치
(4) EN 55011:전기 자기 적합성 (EMC) - 산업 · 과학 · 의료용 (ISM) 기기의 전기 자기 장해
 측정 방법 및 측정의 한계값
(5) IEC 61000-4-2:전기 자기 적합성(EMC) - 시험 및 측정 방법 - 정전기 방전 내구성
(6) IEC 61000-4-3:전기 자기 적합성(EMC) - 시험 및 측정 기술 - 전기 자기 방사 내성 시험
(7) IEC 61000-4-4:전기 자기 적합성(EMC) - 시험 및 측정 기술 - 전기적 빠른 과도 현상 내성 시험
(8) IEC 61000-4-5:전기 자기 적합성(EMC) - 시험 및 측정 기술 - 서지내성 시험
(9) IEC 61000-4-6:전기 자기 적합성(EMC) - 시험 및 측정 기술 - 전자기장 전도내성 시험
(10) KS C IEC 60068-2-1 : 환경 시험 - 제2-1부 : 시험-시험 A : 내항성시험
(11) KS C 0221:환경 시험 방법 - 전기 · 전자 - 고온 (내열성) 시험 방법
(12) KS C 0225: 환경 시험 방법 - 전기 - 전자 - 온도 변화 시험 방법
(13) KS C 0227: 환경 시험 방법 - 전기 - 전자 - 온습도 사이클 (12+12시간 사이클) 시험 방법
(14) IEC 61373: 철도 차량 설비의 충격 및 진동 시험 방법
(15) EN 14752: Railway applications. Body entrance systems

3) 시험 방법
(1) 시험체의 조건
철도차량에 적용되는 출입문(전자제어기기 포함)을 대상으로 한다.
(2) 측정항목 및 측정위치
가. 출입문을 제어하는 전자제어기기의 시험 항목은 표 1과 같다.

표 1 출입문 전자제어기기의 시험항목

<table>
<thead>
<tr>
<th>시험항목</th>
<th>세부항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>외관구조 및 치수검사</td>
<td>외관검사, 치수검사(출입문)</td>
</tr>
<tr>
<td>절연시험</td>
<td>절연저항, 내전압</td>
</tr>
<tr>
<td>전원변동시험</td>
<td>전원변동시험의 정, 하한치의 전압</td>
</tr>
<tr>
<td>전자파 적합성 시험</td>
<td>5.1.9 전자제어기기 시험에 따른다</td>
</tr>
<tr>
<td>운도시험</td>
<td>5.1.9 전자제어기기 시험에 따른다</td>
</tr>
<tr>
<td>진동진동시험</td>
<td>5.1.9 전자제어기기 시험에 따른다</td>
</tr>
</tbody>
</table>

나. 환경시험과 전자파 적합성 시험에서의 성능확인시험 측정항목은 표 2와 같다.

표 2 성능확인시험

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>세부측정항목</th>
<th>측정목적</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경시험 전후 성능확인시험</td>
<td>외관검사</td>
<td>육안으로 사용상 결함여부를 확인</td>
</tr>
<tr>
<td></td>
<td>치수검사</td>
<td>설계된 도면에 따른 치수 확인</td>
</tr>
<tr>
<td></td>
<td>동작시험</td>
<td>출입문의 자동/수동 동작 확인</td>
</tr>
<tr>
<td>전자파 적합성 시험</td>
<td>제어기 입력출력단자를 통상의 상태로 연결한 후 각 단자별 출력값 확인</td>
<td></td>
</tr>
</tbody>
</table>

다. 강도시험
가) 출입문 판넬 강도시험
(가) 판넬에 대한 강도기준
① 차량 내부에서 출입문 표면 0.1m×0.1m 면적을 갖는 임의의 영역에 수직으로 가해지는 2.5kN의 하중
② 차량 외부에서 출입문 표면 전체에 가해지는 2.5kPa의 압력
③ 차량 내부에서 출입문 표면 전체에 2.5kPa의 압력과 0.1m×0.1m 면적을 갖는 임의의 영역에 0.8kN의 수직하중이 동시에 가해지는 조합하중
④ 강도기준은 차량의 설계특성에 따라 조정되어야 하며, 강도시험은 상기 3가지 조건 중 1가지 조건을 선택하여 시행할 수 있다.
(나) 도어 판넬에 손잡이가 있을 경우 아래쪽 수직 방향으로 1.7kN의 하중을 가한
다. 다만, 수직방향 하중은 차량의 설계특성에 따라 조정될 수 있다.

나) 내구성 시험
 (가) 출입문을 실제 사용 조건과 동일한 조건으로 구조물에 설치한다.
 (나) 전원 및 작동압력(공기식, 전기식, 유압식 등)을 연결한다. 전원 및 작동압은 내구성 시험 중 끊김없이 공급되어야 한다.
 (다) 50만회 동작을 원칙으로 하여 차량의 설계특성에 따라 조정될 수 있다. 다만, 발주자의 요구에 따라서 상향 조정 될 수 있다.
 (라) 1일 1회 동작 횟수를 기록하고, 매 5,000회마다 정예물 감지 시험을 한다.

라. 시험 및 측정장비
 가) 시험장비는 해당 환경시험 및 전자파시험의 규격을 지원할 수 있는 시험기여야 한다. 즉, 내구성시험의 특성을 충분히 반영할 수 있는 장비여야 한다.
 나) 성능확인시험을 위해 실물 또는 모의시험장치를 사용할 수 있다.

4) 결과의 분석
 각 세부시험별 결과의 분석은 각 적용표준 및 성능확인시험을 수행하여 실시한다.

5) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기상조건
 (2) 피시험체 상태 및 고유번호
 (3) 적용규격
 (4) 시험방법
 (5) 시험기 교정상태
 (6) 시험기의 종류·형식·설치위치 및 구성도
 (7) 측정항목별 결과
 (8) 기타 특이사항

5.2.12 충돌안전시험
1) 적용범위
 해당 철도차량에 적용되는 충돌안전도에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.

2) 용어정의
 (1) 충돌차량 : 시험체를 장착한 차량으로 피충돌차량 또는 충돌고정벽에 돌방하여 충격을 가하는 차량
 (2) 피충돌차량 : 시험체를 장착한 충돌차량이 부딪쳐 충격을 받는 차량
 (3) 충돌고정벽 : 고정된 구조물로 충돌차량이 부딪쳐 충격을 받는 벽
 (4) 충돌속도 : 충돌차량이 피충돌차량 또는 충돌고정벽에 부딪치기 직전의 속도

![그림 1 고정벽 충돌시험 개략도](image-url)
3) 참고규격
(1) EN15227: Railway applications. Crashworthiness requirements for railway vehicle bodies
(2) EN12663-1: Railway applications. Structural requirements of railway vehicle bodies. Locomotives and passenger rolling stock (and alternative method for freight wagons)
(3) EN15663: Railway applications. Definition of vehicle reference masses

4) 시험 방법
(1) 차량 조건
가. 충돌차량과 피충돌차량 중량은 시험체의 에너지흡수용량, 최대하중, 길이, 중량 등을 고려하여 결정한다.
나. 충돌차량, 피충돌차량, 시험체의 중량을 측정하여 기록한다.
(2) 충돌속도
가. 충돌속도는 시험체의 에너지흡수용량과 충돌안전도 평가기준을 고려하여 결정한다.
나. 기관차 또는 기타 다른 방법으로 충돌차량을 가속하여 정해진 충돌속도를 달성할 수 있는 돌방속도를 결정한다.
(3) 측정항목 및 측정위치
측정항목별 측정위치는 표 1과 같다.

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>측정 위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>충돌하중</td>
<td>시험체를 장착한 지그와 충돌차량 사이</td>
</tr>
<tr>
<td>충돌속도</td>
<td>충돌 발생지점 직전 3m 이내</td>
</tr>
<tr>
<td>차량변위</td>
<td>강체운동을 하는 차량 축면</td>
</tr>
<tr>
<td>고속카메라 영상</td>
<td>시험체 전체 기동을 볼 수 있는 위치 주요 에너지흡수부재의 거동을 볼 수 있는 위치</td>
</tr>
<tr>
<td>차체 중앙방 충돌가속도</td>
<td>충돌차량 및 피충돌차량의 무게 중심</td>
</tr>
<tr>
<td>차체 상하방 충돌가속도</td>
<td></td>
</tr>
<tr>
<td>차체 좌우방 충돌가속도</td>
<td></td>
</tr>
</tbody>
</table>

(4) 측정 장비
측정장비는 DAS(Data Acquisition System), 로드셀, 가속도계, 속도계, 고속카메라 등 시험목적에 적합한 부속장비로 한다. 그 외에 다음사항을 고려한다.
가. 측정장비는 직접적인 충돌이 예상되는 지점에서 계측할 경우 내측격성이 보장되어야 한다.
나. 측정장비는 국부적인 진동이 없는 장소에서 측정방향에 올바르게 설치한다.
다. 측정장비는 수평면에 부착하고, 측정 중의 진동에 의해 움직이지 않도록 고정한다.
라. 충돌하중 및 충돌가속도는 예상되는 최대치의 2배 이상의 값을 측정할 수 있는 범위를 가진 장비를 이용하여 측정한다.
마. DAS는 샘플링속도 10kHz 이상, 고속카메라는 최소 0.5kHz 이상의 성능을 가져야 한다.
(5) 측정방법
가. 충돌하중
나) 동적하중이 측정 가능한 로드셀과 적절한 DAS로 측정한다.
다. 충돌속도
가) 레이저속도계 또는 동급의 속도계를 이용하여 충돌 전 3m이내에서 측정한다.
나) 레이저속도계가 작동하지 않았을 경우 차량변위를 이용하여 충돌속도를 측정할 수 있다.
다. 차량변위
가) 충돌상태 측면에 부착된 스케일바를 고속촬영하여 영상분석을 통해 차량변위를 측정할 수 있다.
나) 충돌 순간은 다른 측정항목과 동기화한다.
라. 고속카메라영상
가) 시험체 전체모동 및 에너지흡수부재의 동동을 확인할 수 있는 위치에서 촬영한다.
나) 충돌 순간은 다른 측정항목과 동기화한다
마. 충돌가속도
가) 충돌상태 또는 피충돌상태의 무게중심에서 측정한다.
나) 3축가속도계 또는 3축 블록을 이용할 수 있다.
다) 충돌 순간은 다른 측정항목과 동기화한다.
5) 결과의 분석
(1) 충돌하중 및 충돌가속도는 시험조건에 적합한 방법으로 필터링한다.
(2) 차량변위와 충돌하중 샘플링주파수 동기화를 위하여 변위를 고차항으로 근사할 수 있다.
6) 평가 기준
7) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 충돌차량 중량
(3) (차대차 충돌시험 시) 피충돌차량 중량
(4) 시험체 중량
(5) 계측장비의 종류·형식·설치위치 및 구성도
(6) 측정항목별 결과
(7) 기타 특이사항

5.3 완성차시험
5.3.1 중량측정시험
1) 적용범위
해당 철도차량의 중량에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용
2) 참고규격
 (1) 유럽연합(EU) Commission Regulation No 1302/2014 4.2.3.2(Axle load and wheel load)
 (2) KS C IEC 61133: 전기 간선 및 앤진 간선 철도 차량의 사용 전 완성차 시험 방법
 (3) EN 15663: Railway applications. Definition of vehicle reference masses
 (4) KS R 9142 철도차량의 무게 측정 방법

3) 용어 정의
 (1) 공차중량(W0) : 승객과 화물이 없는 차량중량으로서 주행에 필요한 추가중량(물, 모래 등)은 제외된다.
 (2) 정비중량(W1) : 운행준비 시의 차량중량으로서 공차중량(W0)에 승무원(기관사, 승무원 등) 및 추가중량(모래, 물 등의 최대용량 기준)을 모두 포함한 상태를 말한다.
 (3) 만차중량(W2) : 주행이 가능한 정비중량(W1)에 승객이 모두 승차한 상태이며, 휴식공간 등을 임시로 승객은 제외한다.
 (4) 초과중량(W3) : 다른 열차가 고장난 경우 고장차량의 모든 승객을 탑승한 최대 열차중량을 말한다.

4) 시험 방법
 (1) 차량 조건
 가. 차종별 1량을 중량측정한다.
 나. 모든 서스펜션의 작동상태는 정상적이어야 한다.
 다. 운행중 발생하는 모든 하중이 고려된 상태를 고려한다.

 (2) 시험 방법
 가. 승객·승무원의 하중을 동시에 측정하기 어려운 경우 하중 측정 후에 합산할 수 있다.
 나. 계근대를 이용하여 ton 단위로 측정하며, 소수점 2자리까지 측정하고 이를 반올림한다.
 다. 측정은 각축의 운중을 측정하여 합산한다.
 라. 해당차량의 모든 축중을 측정한다.
 마. 측정 회수는 동일차량에 대해서 3회 시행하여 산술 평균값을 사용한다.
 바. 운행중 제간시 다음을 고려하여 합산한다.
 가) 승객 및 승무원의 하중은 소지품을 포함한 중량으로서 차량발주자의 요구사항에 따른다. 다만, 차량발주자의 요구사항이 없는 경우에는 3.3.1.2(하중조건)에 따라 계산한다.
 나) 액체 및 모래와 같은 소모성 물품의 질량은 다음의 수치를 이용하여 환산한다. 다만, 도시철도차량(모노레일경전철)에 해당하는 항목만을 고려한다.
 (가) 디젤연료: 840 kg/m³
 (나) 파라핀-free 연료: 800 kg/m³
 (다) 냉각수 및 부동액: 1040 kg/m³
 (라) 유틸레이: 950 kg/m³
 (마) 절연유: 910 kg/m³
 (바) 건조한 모래: 1500 kg/m³
 (사) 연료전지 전해질: 1200 kg/m³
 다) 식음료, 서비스 물품, 연료, 모래 등 소모성 물품의 중량은 차량발주자의 요구사항에 따른다. 다만, 차량발주자의 요구사항이 없는 경우 신청자는 IEC 61133, KS C IEC 61133 등을 참고할 수 있다.
(3) 측정항목 및 측정위치
측정항목별 측정위치는 그림 1의 RF, LF, RR, LR 과 같다.

(4) 측정 장비
가. 측정장비의 최대 측정범위는 차량의 설계 최대하중보다 10% 높은 값을 측정할 수 있어야 한다.
나. 측정장비의 최소 측정단위는 0.01ton(10kg) 단위 이하이어야 한다.

5) 결과의 분석
(1) 측측은 각 축의 윤중을 측정하여 합산하고, [별표3]의 기준을 만족하는지 확인한다.
평균 윤중(A)=(LF + LR + RF + RR) x 전체대차/(4 x 대차수량)로 정의 한다.
(2) 좌우 윤중 합 편차
좌우 윤중 합 편차는 ±5%를 적용한다.

6) 평가 기준
(1) 공차중량 상태에서 각 차축의 한쪽 차륜하중은 동일차축의 좌우측 차륜하중 평균치와 편차가 5% 이내이어야 한다.
(2) 공차중량 상태에서 한쪽 선로 차륜하중의 합은 그 동일 철도차량의 좌우측선로 차륜의 하중 합의 평균치와 편차가 5% 이내이어야 한다.
(3) 축중량의 합이 다음의 조건을 만족하여야 한다.
가. 도시철도차량(모노레일경전철) : 축중 13.5ton 이하 나. 1m당 평균중량 7ton 이하

7) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 측정 항목별 위치
(4) 측정 항목별 하중
(5) 축간 거리
(6) 기타 특이사항

5.3.2 차량한계측정
1) 적용범위
해당 철도차량의 차량한계에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다. 차량의 정적한계는 차량한계 측정으로 입증하고, 동적한계는 개선서(또는 해석서)
2) 용어정의
 (1) 차량과 구조물의 간격의 명칭 및 설명은 EN 15273-1(그림 15)을 참고한다.
 (2) 차량단면 수평변위의 명칭 및 설명은 EN 15273-1(그림 2)를 참고한다.
 (3) 차량단면 회전변위의 명칭 및 설명은 EN 15273-1(그림 10)을 참고한다.
 (4) 차량의 길이방향 단면의 변위에 미치는 영역은 EN 15273-2(그림 A7)를 참고한다.
 (5) 차량의 길이방향 단면의 변위에 미치는 영역은 EN 15273-1(그림 7)를 참고한다.

3) 참고규격
 (1) EN 15273-1: Railway Applications-Gauges, Part1-Generals
 (2) EN 15273-2: Railway Applications-Gauges, Part2 Rolling stock gauge
 (3) EN 15273-3: Railway Applications-Gauges, Part3 Structural gauge
 (4) UIC 505-1: Railway Transport stock, Rolling stock construction gauge
 (5) EN 14363: Railway applications. Testing for the acceptance of running characteristics of railway vehicles. Testing of running behavior and stationery tests
 (6) IEC 62486: Railway applications. Current collection systems. Technical criteria for the interaction between pantograph and overhead line (to achieve free access)
 (7) KS R 9113: 철도차량및철도차량부품의문자삽입기호

4) 시험 방법
 (1) 차체를 뒷차와 편성 조립 후 차량한계 게이지와 줄자를 이용하여 측정한다.
 (2) 구내 주행시험 후 공차(공기 충진) 및 공기스프링의 공기가 빠진 상태(deflated)에서 한다.
 (3) 기준선상에 설치된 소정의 측정 게이지를 이용한다.
 (4) 차량단계 측정용 게이지는 차량단계 측정 전 차수검사를 실시하여 합격한 것이어야 한다.
 (5) 시험 측정 차량이 차량 한계 게이지에 간섭이 되는지 한계 게이지를 3회 왕복 통과한다.
 (6) 차량단계 측정용 게이지는 다음을 고려하여 제작한다.
 가. 차량단계 계산은 차량의 최대 변위가 발생하는 최악의 조건을 고려한다.
 나) 최대의 변위가 발생하는 속도조건
 다) 최대의 변위가 발생하는 하중조건
 라) 차량의 수평기관 동안 발생가능한 마모, 변형을 고려
 마) 차륜의 마모, 유지보수 조건을 고려하여 최악의 상황을 고려
 바) 기타 차량의 특수조건(틸팅장치 및 접전장치 작동 등)
 나. 차량의 최대 변위에는 다음을 고려하여 계산한다
 가) 차량의 형상(길이, 폭, 높이)
 나) 발주자가 제시한 단면방향 및 길이방향의 최소 구간
 다) 차량과 건축단계와의 여유간격 및 유지보수 조건
 라) 차량의 기울이짐에 따른 비대칭
 마) 하중 및 자중에 의한 처짐
 바) 서스펜션 변위 및 마모
 사) 차륜의 반경 및 마모, 이를 보정하기 위한 장치
 아) 접전장치의 유연성
 다. 차량의 변위 계산은 수학적 계산, 컴퓨터 시뮬레이션을 활용할 수 있다
 가) 컴퓨터 시뮬레이션을 이용한 변위 계산을 활용할 수 있다
5) 결과의 분석
 (1) 차량 한계 측정 시험을 실시하여 설계 및 제작의 적합성 및 궤도 시설에 대한 안전성 및 차체와 차체, 차체와 대차간의 장치간 간섭유무를 확인한다.
 (2) 차량한계 측정개이지 통과시 차량 어느 부위라도 차량 한계 측정개이지에 접촉하거나 벗어나서는 안된다.
 (3) 차량의 변위 계산의 세부적인 사항은 EN15273-1, EN15273-2, EN15273-3에 제시된 수학적 방법을 활용할 수 있다.

6) 평가 기준
 차량 한계 측정개이지와 차량의 접촉이 없어야 한다.
 차량한계 측정개이지의 추수결정에 사용된 다음의 자료를 제시하여야 한다.
 (1) 차축스프링 상단부에서 중력중심 계산값
 (2) 차량단면의 중력중심 계산값
 (3) 차축스프링 상단부의 높이
 (4) 스프링의 길이
 (5) 스프링의 폭
 (6) 스프링의 폭
 (7) 스프링의 작동범위
 (8) 스프링 제외 하중
 (9) 전체 하중 계산값
 (10) 차량 및 차축의 하중 계산값
 (11) 차량의 치수
 (12) 차량한계 계산에 사용된 최대 구배값
 (13) 회전중심의 높이
 (14) 대차내 축간거리
 (15) 최대속도
 (16) 운행구간의 최소 곡선반경 등
 (17) 기타 계산에 사용된 기초자료로 EN15273-2 Annex R(Static and Kinematic gauges : list of documents for a vehicle gauge conformance certification)에 기술된 항목

7) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정구간의 곡선반지름, 기울기, 구조 등
 (4) 차량한계 개이지의 치수
 (5) 차량한계 측정개이지의 치수결정을 위한 계산 자료(시뮬레이션자료, 실험자료, 계산자료 등)
 (6) 기타 특이사항

5.3.3 곡선통과시험
 1) 적용범위
 해당 철도차량이 최소곡선반경을 통과할 때 연결장치 및 차체와 대차 등 각 부위의 간섭 여부
2) 용어정의
 곡선반경(Radius of Curvature) : 곡선 선로에 있어서 곡선의 크기를 표시하는 단위

3) 참고규격
 (1) EN 14363: Railway applications. Testing for the acceptance of running characteristics of railway vehicles. Testing of running behavior and stationary tests
 (2) UIC 518: Testing and approval of railway vehicles from the point of view of their dynamic behavior - Safety - Track fatigue - Ride quality
 (3) EN 13674-1: Railway applications. Track. Rail. Vignole railway rails 46 kg/m and above
 (4) EN 13715: Railway applications. Wheelsets and bogies. Wheels. Tread profile
 (5) EN 15302: Railway applications. Method for determining the equivalent conicity
 (6) EN 15427: Railway applications. Wheel/rail friction management. Flange lubrication

4) 시험 방법
 (1) 차량 조건
 가. 차량편성은 실제 운행편성으로 한다.
 나. 측정은 차종(동력차, 부수차 등)별로 실시한다.
 다. 시험은 공차상태로 한다.
 라. 차량은 운전연결에 따라 충분히 정비되어 있어야 한다.
 (2) 측정구간
 가. 측정구간은 최소곡선반경 구현이 가능한 적정한 선로를 협의하여 선정한다.
 나. 측정구간의 선정은 차량발주자 또는 운영자가 협의할 수 있다.
 (3) 주행 속도
 가. 최소곡선반경에서 주행 가능한 최고속도 또는 합의된 주행속도에서 측정한다.
 나. 필요 시, 최소곡선반경 내 차량 정지 상태에서 차체, 대차, 연결기 등 각 부위의 간섭여부를 정밀하게 확인할 수 있다.
 (4) 시험항목
 가. 차체와 차체 사이의 간섭 여부
 나. 다이아프램(Diaphragm) 상태
 다. 연결기장치 상태
 라. 차체와 대차 부품간의 간섭
 마. 대차 부품간의 간섭
 (5) 시험 횟수
 측정구간을 상·하행으로 구분하여 각각 2회 이상 측정한다.
 (6) 시험방법
 가. 차량이 최소곡선반경을 통과한 후, 차량을 정지시킨 상태에서 간섭에 따른 차체, 대차, 연결기 등 각 부위의 마모, 손상 여부를 검사한다.
 나. 필요 시, 최소곡선반경 내 차량 정지 상태에서 차체, 대차, 연결기 등 각부의 간섭 여부를 검사한다.

5) 평가 기준
 (1) 차체와 차체 끝단 부위 간섭 없어야 함
 (2) 다이아프램의 이상변형이 없어야 함
 (3) 연결기 상태 이상 없어야 함
5.3.4 접지시험
1) 적용범위
 해당 철도차량의 접지상태에 대한 설계적합성 또는 형식동등성의 시험으로 입증하는 경우에 적용된다.
2) 용어정의
 (1) 노출된 도전부: 접촉이 용이한 도전 부분으로 정상적으로는 전압이 인가되지 않으나 고장 조건에서 전압이 인가될 수 있는 부분
 (2) 차량접지: 차체와 대차 프레임은 전류 귀환 모선에 연결되거나 접지 장치에 직접 연결되어야 하며, 또는 적절한 경우에는 차축 베어링에 연결될 수 있다. 단, 낮은 전류로 인하여 베어링에 손상이 발생될 위험이 없는 경우에 한한다.
 (3) 보호접지의 정격: 보호 접지는 고장이 발생한 경우 노출된 도체 부분이 전기 충격을 일으키지 않도록 하기 위해 적절한 강도와 통전 능력을 제공할 수 있는 크기이어야 한다.
 (4) 간접 접촉: 고장 조건에서 충전된 노출 도전부에 사람이나 가축이 접촉하는 것
3) 참고규격
 (1) KS C IEC 60077-1:철도 차량용 전기설비-제1부:일반요구사항
 (2) KS C IEC 61991:철도용 전기 설비 - 전기 위험 방지를 위한 보호대책
 (3) KS C IEC 60479-1:Effects of Current on Human Beings and Livestock - Part 1: General Aspects
 (4) KS C IEC 60204-1:Safety of Machinery-Electrical equipment of machines-Part1 : General Requirements
 (5) KS C IEC 61991:철도용 전기 설비-전기 위험 방지를 위한 보호 대책
 (6) EN 50343:Railway applications. Rolling stock. Rules for installation of cabling
 (7) KS R 9197: 철도차량의 절연저항 및 내전압시험 방법
4) 시험방법 및 판정기준
 (1) 차량 조건
 가. 차량편성은 실제 운행편성으로 한다.
 나. 측정은 차종(동력차, 부수차 등)별로 실시한다.
 (2) 측정항목 및 판정기준
 가. 접지상태 확인시험
 가) 시험방법 및 판정기준
승인된 도면에 의거, 전기장치의 접지상태를 육안으로 점검하고, 기기별 설치된 접지선의 누락이 없으며 육안으로 확인하여 접지 단자의 체결 및 이완 표기 여부를 확인하여 이상이 없어야 한다.

나) 측정위치
운전실기기, 동력차기기, 차량하부기기 및 차량상부기기등 접지보호가 필요한 부위를 대상으로 한다.

나. 차체와 접지레일간 접지임피던스 측정
가) 시험방법 및 판정기준
적용전압이 50 V를 초과하지 않는 곳에서 50 A의 일정전류로 측정하여 차체와 접지레일의 최대 임피던스는 표 1의 값을 초과하지 않아야 한다. 측정은 깨끗한 차체와 접지레일간 실시해야 한다.

<table>
<thead>
<tr>
<th>차량종류</th>
<th>최대 임피던스(Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>모노레일경전철 (교류형, 직류형, 직/교류 겸용)</td>
<td>0.15</td>
</tr>
</tbody>
</table>

다. 보호본딩회로의 연속성 확인시험
가) 시험방법 및 판정기준
접지 연속성 시험은 50Hz 또는 60Hz 주파수에 10A를 메인 접지 단자와 보호 접지 회로의 관련된 부분사이에 인가하여 그 양단 사이의 전압을 측정한다. 그 측정값은 보호 접지선의 굵기에 따라 아래 표 2의 값을 초과해서는 안된다. 보통 메인 접지와 신체 일부분이 닿을 수 있는 외부 금속부(metal part), 그리고 내부 각 부속품의 접지부분 사이에 10A를 인가하여 전압을 측정한다.

<table>
<thead>
<tr>
<th>피시험 분기회로의 최소 유효 보호 접지 도체의 단면적 or Size (㎟)</th>
<th>최대 전압 강하 (시험 전류 10 A에 의한 값) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.3</td>
</tr>
<tr>
<td>1.5</td>
<td>2.6</td>
</tr>
<tr>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>4.0</td>
<td>1.4</td>
</tr>
<tr>
<td>>6.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

나) 측정위치
운전실기기, 동력차기기, 차량하부기기 및 차량상부기기등 접지보호가 필요한 부위를 대상으로 한다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험자명 및 입회자명
5.3.5 절연저항시험

1) 적용범위
 해당 철도차량의 절연저항에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.

2) 시험목적
 차체에 설치된 각종 배선의 절연저항을 측정하여 사용 전압에 대한 적합성 여부의 확인을 목적으로 한다.

3) 참고규격
 (1) KS C IEC 61133: 전기 견인 및 엔진 견인 척도 차량의 사양 전 완성차 시험 방법 또는 동등이상의 규격
 (2) KS C IEC 60077-1: 철도 차량용 전기 설비 - 제1부 : 일반 요구 사항 Railway applications.
 Electric equipment for rolling stock. General service conditions and general rules
 (3) KS C IEC 60077-3: 철도용 전기 설비-제3부: 전기 전자 부품-직류 회로 차단기의 개별 요구 사항
 (4) KS C IEC 60077-4: 철도용 전기설비 - 제4부 : 전기전자부품 - 교류 회로차단기의 규정
 (5) KS C IEC 60077-5: 철도용 전기설비 - 제5부 : 전기부품 - HV 퓨즈에 대한 규정
 (6) IEC 62497-1: Railway applications. Insulation coordination. Basic requirements.
 Clearances and creepage distances for all electrical and electronic equipment
 (7) KS C IEC 60850: 철도용 견인 시스템의 공급 전압
 (8) KS R 9197: 철도차량의 절연저항 및 내전압시험 방법

4) 시험 방법 및 판정기준

 (1) 차량 조건
 가. 차량내 모든 배선이 정상적으로 설치된 상태에서 시험을 실시한다.
 나. 단차 상태에서 시험을 실시한다.

 (2) 절연저항측정
 가. 사용하는 절연저항계는 다음과 같다.
 나) 고전압회로의 절연저항 측정시 : 직류 1000V 절연저항계
 다) 저전압회로의 절연저항 측정시 : 직류 500V 절연저항계
 나. 절연저항계로 각 회로의 절연저항을 측정하여 표 1의 규정치 이상이어야 한다. (단 전 자기기는 제외한다.) 이때 기기, 계기 등에서 절연저항 시험에 적합치 않은 것은 시험 회로로부터 끊어 버리거나 또는 단자를 닫힌다.

 표 1. 시험위치별 절연저항 기준
<table>
<thead>
<tr>
<th>시험위치</th>
<th>절연저항 MΩ</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>고전압회로와 대지 사이</td>
<td>≥20</td>
<td></td>
</tr>
<tr>
<td>저전압회로와 대지 사이</td>
<td>≥1</td>
<td></td>
</tr>
<tr>
<td>고전압회로와 저전압 회로 사이</td>
<td>≥5</td>
<td></td>
</tr>
<tr>
<td>저전압 회로와 저전압 회로 사이</td>
<td>≥1</td>
<td></td>
</tr>
<tr>
<td>고전압 회로와 이중절연 기기 틀 사이</td>
<td>≥10</td>
<td></td>
</tr>
<tr>
<td>저전압 회로와 이중절연 기기 틀 사이</td>
<td>≥5</td>
<td>단류기인 경우</td>
</tr>
<tr>
<td></td>
<td>≥1</td>
<td>단류기 이외의 경우</td>
</tr>
</tbody>
</table>

이중절연 틀과 대지 사이	≥5	저전압회로를 포함치 않는 고전압 회로 기기인 경우
	≥1	단류기인 경우
	≥1	저전압회로를 포함한 고전압회로 기기인 경우. 다만 단류기를 제외한다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 사용한 필터특성
(5) 측정항목별 결과
(6) 기타 특이사항

5.3.6 내전압 시험
1) 적용범위
해당 철도차량의 내전압에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 시험목적
차체에 설치된 각종 배선에 규정된 상용주파 전압을 인가하여 이상유무를 확인하여 절연의 안전성 평가를 목적으로 한다.
3) 참고규격
(1) KS C IEC 61133: 전기 건인 및 연진 건인 적도 차량의 사용 전 완성차 시험 방법 또는 동등이상의 규격
(2) KS C IEC 61991:철도용 전기 설비-전기 위험 방지를 위한 보호 대책
(3) EN 50343:Railway applications. Rolling stock. Rules for installation of cabling
(4) KS C IEC 60349-1:전기 건인 철도 차량용 및 도로 차량용 회전 기기-제1부:컨버터 구동 형 고전 동전기 이외 기기의 개별 요구 사항
(5) KS C IEC 61992-1:철도용 전기 설비-고정 설치용 직류 개폐 장치-제1부:일반 요구 사항
철도차량기술기준

(6) KS C IEC 61992-2:철도용 전기 설비-고정 설치용 직류 개폐 장치-제2부: 회로 차단기
(7) KS C IEC 61992-3:철도용 전기 설비-고정 설치용 직류 개폐장치-제3부: 옥내용 단로기 및 위치 단로기
(8) KS C IEC 62128-1:철도용 고정설비 - 제1부: 전기 안전 및 접지에 관한 보호 장치
(9) KS R 9156:철도 차량용 전자 기기의 시험 통칙
(10) KS R 9158:전기차용 제어기기의 시험방법
(11) KS R 9206:철도 차량용 전자 벨브
(12) KS R 9197 :철도차량의 절연저항 및 내전압시험 방법

4) 시험 방법 및 판정기준

(1) 차량 조건
가. 차량내 모든 배선이 정상적으로 설치된 상태에서 시험을 실시한다.
나. 단차 상태에서 시험을 실시

(2) 내전압시험
가. 내전압시험을 하기 전과 후에 5.3.5에서 규정한 절연저항측정을 실시하여 절연저항이 기준을 만족하면 시험전압을 인가하여 내전압시험을 한다.
나. 기기, 계기 등에서 표 1에 나타낸 시험전압에 따른 내전압시험에 적합치 않은 것은 시험화로로부터 끊어 버리거나 또는 단자를 단락한다.
다. 인가전압은 정현파형의 상용주파 교류로 한다.
라. 전압인가 방법은 처음에는 시험전압 1/2이하의 전압을 인가하여 시험전압까지 전압계 지시가 추중할 수 있는 범위내에서 되도록 속히 상승시켜 시험전압에 도달하게 한 다음 1분 동안 유지한다. 이후 가능하면 빠르게 전압을 내린다.

표 1. 시험위치별 시험전압 기준

<table>
<thead>
<tr>
<th>시험위치</th>
<th>시험전압 V</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>고전압회로와 대지 사이</td>
<td>2E+1500</td>
<td></td>
</tr>
<tr>
<td>저전압회로와 대지 사이</td>
<td>2e+1000</td>
<td>e가 50V를 초과하는 경우</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>e가 50V 이하인 경우</td>
</tr>
<tr>
<td>고전압 회로와 저전압 회로 사이</td>
<td>2E+1500</td>
<td></td>
</tr>
<tr>
<td>저전압 회로와 저전압 회로 사이</td>
<td>2e+1000</td>
<td></td>
</tr>
<tr>
<td>고전압 회로와 이중절연 기기 품 사이</td>
<td>2E+1500</td>
<td></td>
</tr>
<tr>
<td>저전압 회로와 이중절연 기기 품 사이</td>
<td>2E</td>
<td>단류기인 경우</td>
</tr>
<tr>
<td></td>
<td>2e+1000</td>
<td>단류기 이외의 경우</td>
</tr>
<tr>
<td>이중절연 품과 대지 사이</td>
<td>2E+1500</td>
<td>저전압회로를 포함하지 않는 고전압 회로 기기인 경우</td>
</tr>
<tr>
<td></td>
<td>2E</td>
<td>단류기인 경우</td>
</tr>
<tr>
<td></td>
<td>2e+1000</td>
<td>저전압회로를 포함한 고전압회로 기기인 경우, 다만 단류기를 제외한다.</td>
</tr>
</tbody>
</table>

* 여기서，E : 고전압 회로의 정격전압, e : 저전압 회로의 정격전압
5) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 시험기의 종류-형식-설치위치 및 구성도
 (4) 사용한 필터특성
 (5) 측정항목별 결과
 (6) 기타 특이사항

5.3.7 누수시험
1) 적용범위
 해당 철도차량의 차체 및 차체외부에 장착된 기기의 누수에 대한 설계적합성 또는 형식동등성
 을 시험으로 입증하는 경우에 적용된다.
2) 참고규격
 KS R 9145:철도차량의 방수시험 방법
3) 시험 방법
 (1) 시험 조건
 시험장소의 온도는 0℃ 이상으로 하고, 풍속은 10 m/s이하로 한다.
 (2) 차량조건
 가. 차량은 완성 후의 것으로 한다.
 나. 차체 외면의 창 및 문은 닫은 상태로 한다.
 다. 지붕의 통풍기는 통기의 상태로 한다.
 라. 그 밖에 차체 바깥면의 점검 구멍마개, 통풍구 등의 개구부는 우천에서의 평상 주행시와
 같은 상태로 한다.
 (3) 측정시점
 실수시험은 차체와 연결부에 연속 1시간 이상 실수하고 실수가 실시된 10-20분 경과 후 내부에
 서 누설 유무를 확인한다. 다만, 완성시험의 경우 실수시간을 30분 이상으로 조정할 수 있다.
 (4) 측정 장비
 누수시험 장비는 물분사 노즐을 갖춘 실수장치에서 시험하여, 물분사구의 모든 노즐을 동
 시에 물을 분사한다.
 가. 물분사량 : 150 mm/hr 이상
 나. 분사 노즐의 수압 : 100 kPa 이상
 다. 실수노즐은 원칙적으로 2 m 이내의 거리에서 차량의 각 면에 실수할 수 있는 것으로
 한다.
 라. 정지상태에서의 누수시험에 어려운 경우 이와 동일한 조건으로 차량이 균등한 속도로
 서행 통과하면서 시험 할 수 있다.
4) 결과의 분석
누수의 확인은 육안으로 하며 다음 3가지 판정기준에 따른다.
(1) 고인물이 없음 (Non retention of water) : 간접적인 방수능력을 나타내며 차량이 악천후에 노출되었을 때 다량의 수분이 침투하는 것을 방지하고 침투한 수분은 자연스럽게 외부로 배출되어 내부에 잔존하는 고인물이 없어야 하는 상태를 나타낸다.
(2) 수분 침투가 없음 (Non infiltration of water) : 본 방수능력은 침투한 수분이 흘러내려고하는 현상이 없어야하며 방수 씨(Sail)의 내부표면에 물기가 보이거나 물방울이 맺히는 정도의 수분 침투는 허용한다.
(3) 완전방수 (Perfect tightness) : 본 방수능력은 어떠한 수분침투 및 침투흔적이 없어야 한다.
5) 평가 기준
(1) 부득이하게 물 침투가 발생되는 출입문 부위를 제외하고 각각의 경우 물의 침투는 없어야 한다.
(2) 결선부위와 전기장치 또는 차량의 안전운행 및 유지보수에 필요한 다른 장치들에 영향을 주어서는 안 된다.
6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기상조건
(2) 시험대상
(3) 시험장치
(4) 시험방법
(5) 시험결과
(6) 기타 특이사항

5.3.8 차체리프팅시험
1) 적용범위
해당 철도차량의 대차와 차체의 분리 및 조립작업의 원활성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 시험 방법
(1) 차량 조건
가. 차량은 완성차종별 실시한다.
나. 각종 공압장치의 압력을 배기하여 대기압으로 한다.
다. 평탄 선로에서 한다.
라. 시험은 대차분리시험과 차량운반시험으로 실시한다.
(2) 측정 장비
완성차량을 충분히 들어올리고 운반이 가능한 시험저그(Jig) 및 크레인 설비로 한다.
(3) 측정방법
가. 대차분리시험
가) 차체와 대차의 분리에 필요한 각종 연결장치를 공차상태에서 해체한다.
나) 리프팅 장비를 언더프레임에 설치된 책패드에 고정한다.
다) 리프팅 작업 후 차체와 대차를 조립한다.
라) 언더프레임에 설치된 책패드로부터 리프팅 장비를 해체한다.
마) 차체와 대차사이에 분리된 각종 연결장치를 공차상태에서 다시 조립한다.
나. 차량운반시험
가) 차체와 대차가 조립된 차량을 공차상태에서 인양한다.
나) 차량을 인양 후 서서히 안착시킨다.
다) 관절대차로 연결되는 차량의 경우에는 예외로 할 수 있다.
3) 평가 기준
(1) 대차분리시험
가. 리프팅 장비를 언더프레임에 설치된 책패드에 고정할 때 간섭이 없고 양호하게 고정되어야 한다.
나. 차체와 대차를 연결하는 연결장치의 해체, 결합시 작동상태가 간섭이 없고 양호하여야 한다.
다. 리프팅작업에 의하여 차량과 대차가 분리 또는 결합될 때 작동상태가 간섭이 없이 원활하여야 한다.
(2) 차량운반시험
가. 전체적인 리프팅 작업이 간섭없이 원활하여야 한다.
나. 리프팅 작업 후 차체의 내외표면, 내부기기, 상하기기, 옥상기기의 조립 및 장착상태에 이상, 변형이 없이 양호하여야 한다.
4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기상조건
(2) 차량상태 및 측정차량
(3) 기타 특이사항
5.3.9 집전장치시험
1) 적용범위
해당 철도차량에 적용되는 집전장치의 완성차(정적) 특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.
2) 용어정의
용어의 정의는 국제표준을 따르는 KS C IEC 60494-2 및 IEC 62499를 따르며 주요 용어는 다음과 같다.

(1) 집전장치 : 1개 이상의 전차선에서 집전하는 장치로서, 하부 프레임, 동작 시스템, 집전 헤드 등으로 구성된다. 형상은 판토그래프방식, 제3궤조방식 등 다양하고, "동작" 위치에서 이 장치는 전체적으로 부분적으로 전압을 받는다. 전차선에서 차량 전기 시스템으로 전류가 전달되도록 해 준다.

(2) 프레임 : 집전장치 하부 프레임에 대해 수직 방향으로 집전 헤드를 움직일 수 있도록 해 주는 관절형 구조체

(3) 판토그래프 집전헤드 : 프레임에 의해 지지되는 집전장치 부분으로서 집전판, 혼(horn) 등을 포함하며 현가장치를 포함한다.

(4) 집전판 : 집전헤드의 교체 가능한 마모 부분으로 전차선과 접촉한다.

(5) 절연판 : 제3궤조 집전장치 프레임과 차체 또는 대차 프레임 사이를 절연.

(6) 동작 시스템 : 제3궤조 집전장치의 관절 링크와 스프링으로 구성되어 집전장치와 전차선 사이의 접촉을 유지

(7) 제3궤조 집전장치 집전헤드 : 동작 시스템과 집전판 사이에서 접촉력을 전달하고 전차선의 각도 변화에 따라 집전판의 고른 접촉을 유지

3) 참고규격

(1) KS C IEC 60494-2:철도용 전기 설비 - 집전장치의 특성 및 시험 제2부:도시철도 차량용 집전장치

(2) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구 사항

4) 시험 방법

(1) 차량 조건
 가. 차량편성은 실제 운행편성으로 한다.
 나. 측정은 차량에 장착된 장치별로 실시한다.
 다. 시험하중은 공차상태(다만, 측정자 및 측정기자재 포함)로 한다.
 라. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.

(2) 시험항목
 측정항목은 다음 표와 같다.

<table>
<thead>
<tr>
<th>순번</th>
<th>시험항목</th>
<th>구분</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>동작시험</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>기밀시험</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>집전헤드추중성시험</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>접.assets상태유지력시험</td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>압상력시험</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>상승 및 하강시간시험</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>최저동작공기압시험 및 최저동작전압시험</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>완충작용높이검사</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>집전장치편향시험</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>내전압시험</td>
<td>○</td>
</tr>
</tbody>
</table>
(3) 시험 장비
가. 관련시험 전용/범용 장비를 사용한다.
나. 각 시험 장비의 검/교정 유효기간은 공인점검기관에서 관련규격에 의해 발행하는 검/교정 성적서의 유효기간 이내에 있어야 한다.

(4) 시험방법
가. 동작시험 (관성)
가) 시험조건
(가) 시험은 정지 상태에서 시행한다.
(나) 전차선에 전원을 인가하지 않는다.
(다) 모든 배선용차단기는 정상상태로 한다.
(라) 운전실 선택스위치를 ON 후, 배터리 투입상태로 한다.
(마) 네트워크 정상동작 조건에서 시험한다.
(바) 차량의 위치를 설정한다. (판토그래프 형식)
(사) 지중에는 미끄럼방지 등 안전을 위한 설비가 확보되어 있어야 한다. (판토그래프 형식)
(아) 수동 동작만 가능할 경우에는 해당기능만 시행한다.
나) 시험방법
(가) 동력차의 집전장치 공압을 투입하고 운전석의 집전장치 작동을 정상 및 비상모드에서 시험한다.
(나) 집전장치의 정상적인 상승 및 하강이 원활하게 작동되는지 육안으로 확인한다.
(다) 상승높이 제한장치의 동작 상태를 확인하며, 옥상에 설치된 상승높이제한장치가 작동되는지 육안으로 확인한다.
(라) 수동 동작만 가능할 경우에는 해당기능만 시험한다.

나. 기밀시험
가) 시험조건
(가) 상온에서 진행한다.
(나) 정차상태에서 진행한다.
(다) 차량의 전원이 모두 OFF 된 상태에서 시작한다.
(라) 공압제어유니트 전단까지의 기밀시험은 차량의 기밀시험에서 수행한다.
(마) 공압을 사용하지 않는 경우 제외한다.
나) 시험방법
(가) 주공기 공급을 차단시킨다.
(나) 집전장치 공압라인에 공기가 없는 상태에서 테스트지그를 전자밸브 토출구에 연결하여 최대 작동 공압이 주입하거나 공급공기라인에 직접 연결하여 공기를 주입한다.
(다) 집전장치 상승을 확인한다.
(라) 자중에 의해 하강되지 않도록 고정한 후 공급된 압력이 안정된 후 테스트지그 의 콕크를 차단하고 테스트지그의 압력 게이지로 압력 감하량 측정을 시작한다. (집전장치 고정 방법은 막대 등을 이용하되, 시험 여건에 따라 변경 될 수 있다.)
다. 집전헤드 추중성시험
가) 시험조건
(가) 집전장치를 최대작동위치로 고정하여 실시한다.
(나) 필요한 경우 정격 압력의 압축공기를 공급한다.
(다) 작동기능이 없는 경우에는 제외한다.

나. 시험방법
(가) 집전장치를 특정위치에 고정시키기 위하여 집전 헤드의 움직임에 영향을 주지 않는 곳에 고정 또는 이에 준하는 방법으로 위치를 고정한다.
(나) 집전장치에 규정된 사양에 따라 외부에서 힘을 가하여 움직임과 회전범위를 측정한다.
(다) 집전 헤드의 자유도는 규정치를 만족하여야 한다.

라. 접진 상태 유지력을 시험
가. 시험조건
(가) 접전장치가 완전히 접혀진 상태로 시험한다.
(나) 3궤조 방식의 경우 제외한다.

나. 시험방법
(가) 측정 장치를 상 방향의 견인력이 작동하는 집전 헤드에 고정한다.
(나) 접전장치에 변형을 주지 않는 힘을 상향으로 가하여 접전장치가 접혀진 상태를 유지하려는 힘을 측정한다.

마. 압상력 시험
가. 시험조건
(가) 공압제어 유니트의 상승하강 제어용 전자밸브에 정격공기압을 인가한다.
(나) 배터리 투입상태에서 시험한다.
(다) 수동방식의 경우 스프링등의 장치에 의한 일정높이에서 접전슈의 압상력을 측정한다.

나. 시험방법
(가) 접전장치가 상승한 상태에서 정적 압상력에 해당되는 질량 추를 이용하여 접전헤드가 작동범위 높이에서 정지를 유지하는지 확인한다.
(나) 유압댐퍼 제거 및 장착 시 수행한다(단, 질량 추 무게는 두 경우 제시된 무게를 사용토록 한다.)
(다) 수동방식의 접전장치는 접전슈와 배이스의 거리를 일정하게 고정시킨 후 스프링게이지를 이용하여 접전슈가 스토퍼로부터 떨어지는 순간의 압력을 확인한다.

바. 상승시간시험
가. 시험조건
(가) 공기압 : 정격공기압
(나) 배터리 투입상태에서 시험한다.
(다) 수동작동식의 경우 제외한다.

나. 시험방법
(가) 접전장치를 상승시키면서 접진상태에서 접전을 위한 높이까지 상승시간을 측정한다.
(나) 접전장치를 하강시키면서 접전을 위한 높이에서 접은상태까지 하강시간을 측정한다.

사. 최저작동 공기압 시험 및 최저작동 전압 시험(편성)
가. 시험조건
(가) 공기압 : 최저작동공기압
(나) 공급전원 : 최저 전압
(나) 시험방법
 (가) 별도의 외부 압축공기를 연결하고, 공급라인 최저 작동 공기압력으로 가압하여 집전장치가 상승하는지 확인한다.
 (나) 별도의 외부 전원을 연결하고, 최저 작동 전압으로 가압하여 집전장치가 상승하는지 확인한다.
 (다) 집전장치가 상승하는 최저공기압 및 전압을 각각 측정한다.
 (라) 수동작동식의 경우 제외한다.

아. 완충작용 높이검사
 가) 시험조건
 (가) 정격공기압
 (나) 공기압을 사용하지 않는 집전장치는 제외
 (나) 시험방법
 (가) 접혀진 상태의 집전장치를 동작시킨다.
 (나) 집전장치의 완충동작이 사용범위 이내에서 이뤄지는지 확인한다.
 (다) 집전장치가 상승하여 전차선에 닿을 때와 하강하여 안착할 때 충격이 없이 동작하는지 확인한다.

자. 집전장치 편향시험
 가) 시험조건
 (가) 정격공기압을 가압한다.
 (나) 판토그래프식이 아닌 경우 별도로 편향기준을 정의한다.
 (나) 시험방법
 (가) 집전장치를 일정높이로 고정한다.
 (나) 집전헤드의 양측면에서 집전장치의 진행방향과 직각으로 정적압상력을 인가한다.
 (다) 가선의 정상집전범위 이상의 편향이 없는지 확인한다.
 (라) 제3궤조 집전장치의 경우에는 가선의 정상집전범위 이상의 편향이 있는지 확인한다.

차. 내전압시험(단차)
 가) 차량 내전압 시험에서 수행하여 절연에 이상이 없어야 한다.
 (나) 차량 내전압 시험기준 및 결과로 판정한다.

5) 결과의 분석
 (1) 각 시험 특성에 따라 결과를 기록지에 작성한다.
 (2) 시험결과가 적합적으로 판정에 사용하지 않는 경우 분석과정과 분석결과를 작성한다.

6) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정자
 (4) 시험기의 종류/형식/설치위치 및 구성도
 (5) 측정항목별 결과
 (6) 기타 특이사항
5.3.10 추진제어장치시험
1) 적용범위
해당 철도차량에 적용되는 추진제어장치 제어기능에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 참고규격
(1) KS C IEC 60571: 철도 차량용 전자기기의 개별 요구 사항
(2) KS C IEC 61133: 전기 견인 및 연진 견인 철도 차량의 사용 전 완성차 시험 방법
(3) KS C IEC 60850: 철도차량 시스템의 공급 전압
(4) IEC 62313: Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
(5) KS C IEC 60638: 철도용 전기설비 - 전기견인용 회전기기의 정류 상태 시험 평가 기준 및 코드
(6) KS C IEC 61374: 철도용 전기설비 - 견인 전원시스템의 과전압
(7) KS C IEC 61377: 철도용 전기설비 - 전기견인 흐름 및 제어 장치의 조합 시험 방법
(8) KS C IEC 61377-2: 철도용 전기설비의 복합시험 - 제2부: 초퍼 구동형 적용 견인 전동기 및 제어 장치의 조합 시험 방법
(9) KS C IEC 61377-3: 철도용 전기설비 - 전기견인용 간접 변환기 구동 교류 전동기 및 제어 장치의 조합 시험 방법
(10) KS C IEC 62128-2: 철도용 고정설비 - 제2부: 적용 견인시스템의 표류전류 영향에 대한 보호규정
(11) KS C IEC 60310: 견인용 변압기 및 유도기의 개별 요구사항
(12) KS C IEC 60322: 철도 차량용 전기 설비 - 개방형 전력 저장기의 개별 요구 사항
(13) KS C IEC 60494-2: 철도용 전기설비 - 판토폴레프의 특성 및 시험 - 제2부: 도시 철도 및 경전철차량용 판토폴레프
(14) KS C IEC 61287-1: 철도용 전기설비 - 철도 전력 변환 장치 - 제1부: 특성 및 시험 방법
(15) KS C IEC 61287-2: 철도 차량 차상에 설치된 전력 컨버터 - 제2부: 추가 기술 정보
(16) KS C IEC 61881: 철도용 전기설비-전력용 커패시터
(17) KS C IEC 60349-1: 전기 견인 철도 차량용 및 도로 차량용 회전기기 – 제1부: 컨버터 구동형 교류 전동기 이외 기기의 개별 요구 사항
(18) KS C IEC 60349-2: 전기 견인 철도 차량용 및 도로 차량용 회전기기 – 제2부: 컨버터 구동형 교류 전동기의 개별 요구 사항
(19) KS C IEC 60349-3: 전기견인 철도 차량용 및 도로 차량용 회전기기–제3부: 부품 손실합계 에 의한 컨버터 구동형 교류 전동기의 총 손실 측정
3) 시험 구분

<table>
<thead>
<tr>
<th>시험항목</th>
<th>형식승인</th>
<th>완성검사</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>기능확인시험</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>기동확인시험</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
4) 시험 항목
(1) 기능확인시험
차량의 주회로 전원이 투입되지 않은 상태에서 제어전원만 인가하여 제어장치를 동작시킨 후 운전등가신호를 입력하여 제어기의 출력동작확인을 목적으로 한다.
(2) 기동확인시험
역행 및 후진지령에 대한 전력반도체소자 구동신호의 적합성 확인을 목적으로 한다.
5) 시험 방법 및 판정기준
(1) 기능확인시험
가. 시험조건
전차선전압을 인가하지 않은 상태에서 등가의 제어용전원을 이용하여 시험한다.
나. 측정항목
가) 추진제어장치의 인버터/컨버터 내부 구성모듈의 입력전원 전압
나) 추진제어장치의 인버터/컨버터 제어 전원장치 출력전압
다) 전력반도체소자 구동신호의 파형
라) 제어기 동작시험
다. 시험방법 및 판정기준
가) 주회로 전원을 인가하지 않은 상태에서 차량의 규정된 동작 순서에 따라 해당 장치를 동작시킨다.
나) 외부로 출력되는 제어신호가 기동 순서에 정해진 대로 출력되는지 확인한다.
다) 모의 운전지령에 따라 전력반도체 구동신호가 적절하게 출력되는지 확인한다.
라) 인버터/컨버터의 전압, 전류, 온도 등의 각종 상태검출기에 모의고장조건신호를 입력하였을 때 적절한 보호동작을 하여야 한다.
마) 회생전류의 양을 모의 신호로 입력하여 혼합제동관련 신호의 적합성을 확인한다.
(2) 기동확인시험
가. 시험조건
가) 제어용전원을 인버터/컨버터 제어기에 연결한다.
나) 제어기 동작조건은 시험모드에서 한다.
다) 모의 신호발생기에 의해 제어신호를 인가할 수 있어야 한다.
나. 측정항목
가) 기동 및 정지동작 순서
나) 제어신호
다) 역행 및 회생신호
다. 시험방법
모의 신호발생기를 이용하여 역행 및 회생지령을 입력하였을 때 인버터/컨버터 제어기의 동작신호를 검사한다.

5.3.11 보조전원장치시험
1) 적용범위
해당 철도차량에 적용되는 보조전원장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용한다.
2) 참고규격
(1) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구 사항
(2) KS C IEC 61287-1:철도용 전기 설비-철도용 전력 변환 장치-제1부:특성 및 시험 방법
(3) KS C IEC 61287-2:철도 차량 차상에 설치된 전력 컨버터 - 제2부 : 추가 기술 정보
3) 시험방법 및 판정기준
 (1) 시험조건
 가. 차량은 동작가능한 최소, 또는 그 이상의 편성별차로 구성한다.
 나. 전차선에 전원을 인가한다.
 다. 차량에 연결된 외부전원 및 압축공기 등은 모두 분리한다.
 (2) 시험방법 및 판정기준
 가. 무부하 운전시의 출력전압
 가) 시험조건
 (가) 차량에 설치된 보조전원계통의 기기를 모두 분리하여 보조전원장치가 무부하 상태에서 운전되도록 한다.
 (나) 전차선 정격전압을 인가한다.
 나) 측정항목
 (가) 교류 및 직류 출력전압의 크기
 (나) 교류출력전압의 주파수
 (다) 교류출력전압의 왜곡
 (라) 교류출력전압의 상회전 방향
 (마) 직류출력전압의 리플율
 다) 시험방법 및 판정기준
 (가) 차량의 조작순서에 의거 차량을 동작하여 보조전원장치의 기동을 확인한다.
 (나) 보조전원장치의 기동이 완료된 상태에서 2)의 각 항목을 측정하여 보조전원장치의 정상적인 동작을 확인한다.
 (다) 교류출력전압의 상회전 방향은 보조전원장치 3상교류 출력단자의 표시와 일치하여야 한다.
 (라) 직류출력전압의 리플율은 축전지를 분리하고 측정한다.
 나. 동작시험
 가) 시험조건
 (가) 차량에 설치된 보조전원계통의 기기는 정상적인 동작상태를 유지하여 보조전원장치가 정상적인 부하조건에서 기동되도록 한다.
 (나) 시험은 4회의 완전한 기동을 시행하며, 전차선 정격전압의 허용 범위에서 전원 설비가 제공할 수 있는 최대전압 및 최소 전압으로 각 2회씩 시행한다.
 (다) 기동과 정지에 필요한 시간으로 한정하여 각 시험의 간이를 동일하게 한다.
 나) 측정항목
 (가) 전차선전압 및 전류
 (나) 교류출력의 출력전압 및 전류
 (다) 교류출력의 출력주파수 및 역율
 (라) 교류출력전압의 왜곡
 (마) 직류출력의 출력전압 및 전류
 (바) 직류출력전압의 리플율
 다) 시험방법 및 판정기준
 (가) 차량의 조작순서에 의거 차량을 동작하여 보조전원장치의 기동을 확인한다.
 (나) 보조전원장치가 기동된 이후에 동작하는 보조전원계통의 기기를 규정된 순서대로
로 동작시키며 보조전원장치의 동작을 확인하여 이상이 없어야 한다.
(다) 이상의 시험은 2)항의 각 항목을 시간에 대하여 기록한 차트를 통하여 확인되어야 한다.
(라) 축전지를 분리하고 충전기의 부하를 규정된 전부하상태로 하여 직류출력전압의 리플율을 측정한다.

다. 축전지 및 충전기 기능확인시험
가) 시험조건
(가) 축전지는 정격용량으로 충전되어 있어야 한다.
(나) 전성열차의 충전기와 축전자가 각각 1대 이상 설치된 경우 1대의 충전기와 축전기가 전원을 공급하는 차량만 전성열차로부터 분리하여 시험할 수 있다.
(다) 축전지에 별도의 송풍기등이 설치된 경우 정상동작상태로 한다.
나) 측정항목
(가) 최대충전전류
(나) 최대전압
(다) 부등충전전압
(라) 부등충전전류
(마) 방전전류
(바) 방전시간
다) 시험방법
(가) 충전기가 정지된 상태에서 축전지를 전원으로하는 부하기기를 작동시켜 축전지의 방전종전압 도달시간 및 방전전류를 측정하여 이상이 없는지 확인한다.
(나) 정격 입력전압이 인가된 충전기가 규정된 전부하상태에서 차량의 1일 평균운영시 간내에 축전지를 충전할 수 있는지를 확인한다.
(다) 충전기간동안 가스가 위험할 정도로 축적되지 않도록 축전지 박스의 통풍이 충분한지를 확인한다.

4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 사용한 필터특성
(5) 측정항목별 결과
(6) 기타 특이사항

5.3.12 차상신호장치시험

1) 적용범위
해당 철도차량에 적용되는 차상신호장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
시험품 : 시험대상 차상신호장치
3) 시험의 종류 및 목적
본 규격은 시험품이 적용될 차량이 완료된 후 원성차 상태에서 차상신호장치의 기능 및 동작
상태를 확인하기 위한 시험으로 다음과 같은 시험이 있다.

(1) 외관구조 및 치수검사
 가. 외관검사 : 차상신호장치의 배선상태, 결선상태, 설치상태 등에 이상이 없는지 여부를 확인하는 시험이다.
 나. 치수검사 : 차량에 설치된 차상신호장치의 주요 치수가 허용범위를 초과하는 부분 등이 있는지 여부를 확인하기 위한 시험이다.

(2) 전원검사
 가. 전원검사 : 차량의 전원이 ON된 상태에서 차상신호장치로 인가되는 전원 값을 확인하여 규정된 기준을 만족하여야 한다.
 나. 전원검사 : 차상신호장치의 전원이 각 하부 기기로 정상적으로 인가되는지 확인하여 정상적으로 전원이 인가되고 있음을 확인하여야 한다. 확인방법은 차상신호장치 전원을 ON/OFF에 따라 각 하부장치 전원보드의 ON/OFF되는지 LED 표시로 확인한다.

(3) 기능검사
 가. 자가진단시험
 가) 차상신호장치의 전원을 인가한 후 자가진단이 바로 수행되는데지 확인하여, 이상이 없어야 한다. 단 자가진단기능이 없는 차상신호장치는 장치의 초기화가 바로써 수행되는지의 검사로 대신할 수 있다.
 나) 자가진단 기능 수행 후 생성되는 시험결과 파일을 확인하거나, 설계서에 규정된 각 보드들의 LED 점멸상태로 정상적으로 수행되었는지 확인한다.
 나. 연결상태 확인시험
 가) 차상신호장치 제어부와 화면표시장치, 차상 안테나 등과의 연결상태를 확인하는 것으로, 1) 자가진단시험에서 연결상태 확인 항목이 있을 경우 시험이 수행된 것으로 간주한다.
 나) 화면표시장치 또는 설계서에 규정된 각 보드의 LED 점멸 상태를 통해 각 장치들의 정상적으로 연결되었는지 확인한다.
 다. 차량 인터페이스 확인시험
 가) 차상신호장치와 차량의 다른 장치들과 연결이 완료된 상태에서 차상신호장치가 적절한 동작을 구현하고 있는지 확인하는 시험이다.
 나) 차상신호장치를 정상동작시켜, 장치 각 보드들과 기관사 표시장치에 설계서에 규정된 상태로 표시되는지 확인한다.
5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 시험품의 구성 상태 및 시험품
 (3) 설치된 차량
 (4) 측정항목별 결과
 (5) 기타 특이사항

5.3.13 종합제어장치시험
1) 적용범위
 해당 철도차량에 적용되는 종합제어장치의 설계적합성 또는 형식등록성을 시험으로 입증하는 경우에 적용된다. 다만, 종합제어장치가 독립적으로 설치되는 경우에 한한다.
2) 참고규격
 (1) KS C IEC 60571:철도용 전자기기의 개별 요구 사항
 (2) IEC 61375 시리즈 :Electronic railway equipment - Train communication network (TCN)
 (3) IEC 62280 :Railway applications - Communication, signalling and processing systems
 - Safety related communication in transmission systems
3) 시험방법 및 판정기준
 (1) 운전실 모니터 시험
 가. 시험조건
 시험대상 차량에 설치된 축전지 또는 외부전원을 연결하여 차량을 정상적으로 기동시킨다.
 나. 측정항목
 가) 모니터장치의 구동상태
 나) 모니터장치의 모드 변경기능 상태
 다) 모니터장치의 표시기능 상태
 다. 시험방법 및 판정기준
 가) 모니터장치의 구동상태
 모니터장치에 제어전원을 연결하여 동작여부를 육안으로 확인하여 이상이 없어야 한다.
나) 모니터장치의 모든 변환기능 상태
모니터장치의 각 모드로 변환 동작상태를 확인하여 이상이 없어야 한다.
다) 모니터장치의 표시기능 상황
모든 변환기능의 동작상태 시험시, 모니터에 표시된 모양에 깨어짐의 발생 및 모니터 색상의 선명도를 육안으로 확인하여 이상이 없어야 한다.

(2) 종합제어장치 전원동작 시험
가. 시험조건
시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나. 측정항목
차량내 각 종합제어장치의 동작상태
다. 시험방법 및 판정기준
각 종합제어장치에 전원을 인가하여 동작여부를 확인하여 이상이 없어야 한다.

(3) 운전반 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 종합제어장치를 동작시킨다.
나. 측정항목
가) 역전기와 잠금장치 동작
나) 주간제어기 동작
다) 비상차단 및 제동장치 동작
라) 모드스위치 동작
마) 고전압장치 관련 스위치 동작
바) 출입문장치 관련 스위치 동작
사) 냉난방장치 관련 스위치 동작
아) 표시등 동작
자) 기타 스위치 제어 동작
다. 시험방법 및 판정기준
가) 역전기와 잠금장치 동작
역전기를 동작시켜 운전실에 전원이 공급됨을 확인하고 역전기상태를 종합제어장치가 인지하였음을 확인하여 이상이 없어야 한다.
나) 주간제어기 동작
주간제어기의 노치상태를 확인하여 이상이 없어야 한다.
다) 비상차단 및 제동장치 동작
비상차단스위치와 비상제동스위치를 동작시켜 종합제어장치가 주간제어기의 노치를 인지하였음을 확인하여 이상이 없어야 한다.
라) 모드스위치 동작
ATC/ATO 모드스위치와 출입문 모드스위치를 동작시킨 후, 모드스위치의 각 모드에 대한 종합제어장치의 인지상태를 확인하여 이상이 없어야 한다.
마) 고전압장치 관련 스위치 동작
집전기상승/주회로차단기담은 버튼을 누르고 종합제어장치가 인지하였음을 확인하여
이상이 없어야 한다. 집전기하강/주회로차단기차단버튼을 누르고 종합제어장치가 인지하였음을 확인하여 이상이 없어야 한다.

바) 출입문 관련 스위치 동작
운전면의 중앙과 양측면에 있는 출입문열림버튼을 누른 후, 종합제어장치가 인지하였음을 확인하고, 출입문닫힘버튼과 재개폐버튼을 누른 후, 종합제어장치가 인지하였음을 확인하여 이상이 없어야 한다.

사) 냉난방설치기 관련 스위치 동작
냉난방설치기 모드스위치의 동작을 종합제어장치가 인지하였음을 확인하여 이상이 없어야 한다.

아) 표시등 동작
시험용컴퓨터를 이용하여 운전면에 설치된 표시등의 점/소등 동작을 종합제어장치에 명령하여 종합제어장치의 출력을 확인하고 표시등의 동작을 확인하여 이상이 없어야 한다.

자) 기타 스위치 제어 동작
상기의 스위치 및 버튼 이외의 조작용 스위치 및 버튼 등을 조작하고 종합제어장치가 인지하였음을 시험용컴퓨터로 확인하여 이상이 없어야 한다.

(4) 고전압장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 동동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동적시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.
마) 기기의 동작에 필요한 경우 압축공기 또는 압력유체 등을 외부에서 공급한다.

나. 측정항목
가) 집전장치 동작상태
나) 충전접촉기 동작상태
다) 주회로차단기 동작상태
라) 접지스위치 동작상태

다. 시험방법 및 판정기준
가) 집전장치 동작상태
시험용 컴퓨터를 이용하여 집전장치 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 집전기제어용 계전기의 동작을 확인하고, 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다. 다만, 소프트웨어 동작에는 적용하지 않는다.

나) 충전접촉기 동작상태
시험용 컴퓨터를 이용하여 충전접촉기의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 충전접촉기제어용 계전기의 동작을 확인하고, 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

다) 주회로차단기 동작상태
시험용 컴퓨터를 이용하여 주회로차단기의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 주회로차단기계전기의 동작을 확인하고, 종합제어장치가
장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.
나) 접지스위치 동작상태
 접지스위치를 수동으로 이동시킨 후, 종합제어장치가 인지하였음을 컴퓨터로 확인하여 이상이 없어야 한다.
(5) 연장급전장치 연계동작 시험
 가. 시험조건
 가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
 나) 전차선은 전원을 가리지 않은 상태로 시험한다.
 다) 종합제어장치를 동작시킨다.
 라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
 연장급전 접촉기 동작상태
 다. 시험방법 및 판정기준
 연장급전의 동작을 컴퓨터를 통하여 종합제어장치에 명령한다. 종합제어장치의 출력을 확인하고 연장급전계전기와 연장급전접촉기의 동작을 확인하여 이상이 없어야 한다. 연장급전접촉기의 동작을 종합제어장치가 인지하였음을 컴퓨터로 확인하여 이상이 없어야 한다.

(6) 제동장치 및 압축기장치 연계동작 시험
 가. 시험조건
 가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
 나) 전차선은 전원을 가리지 않은 상태로 시험한다.
 다) 종합제어장치를 동작시킨다.
 라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
 제동장치 동작상태
 다. 시험방법 및 판정기준
 가) 제동장치 동작상태
 시험용 컴퓨터를 이용하여 제동장치 동작을 종합제어장치에 명령하고 종합제어장치의 출력을 확인하여 이상이 없어야 한다.
 나) 제동장치 동작상태
 시험용 컴퓨터를 이용하여 보조압축기 동작을 종합제어장치에 명령하고 종합제어장치의 출력과 보조압축기 동작을 확인하고 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.
티로 확인하여 이상이 없어야 한다. 보조압축기가 정지한 후, 보조압력스위치의 작동을 확인하여 이상이 없어야 하며, 수동으로 보조압력스위치를 동작시켜 종합제어장치가 인지하였음을 컴퓨터로 확인하여 이상이 없어야 한다.

라) 주압축기 동작상태
시험용컴퓨터를 이용하여 주압축기 동작을 종합제어장치에 명령한다. 종합제어장치의 출력과 주압축기동작을 확인하고, 주압축기 동작과 종합제어장치의 인지상태를 확인하여 이상이 없어야 한다. 주압축기 압력스위치를 수동으로 조작하여 종합제어장치의 인지상태를 시험용컴퓨터로 확인하여 이상이 없어야 한다. 주압축기의 온도계전기를 수동으로 조작하여 종합제어장치가 인지하였음을 컴퓨터로 확인하여 이상이 없어야 한다.

(7) 출입문장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.
마) 기기의 동작에 필요한 경우 압축공기 또는 압력유체 등을 외부에서 공급한다.

나. 측정항목
가) 출입문 인터록(Door Interlock) 계전기 동작상태
나) 출입문 동작상태
다) 출입문 바이패스스위치 동작상태

다. 시험방법 및 판정기준
가) 출입문 인터록(Door Interlock) 계전기 동작상태
좌/우측의 출입문 인터록(Door Interlock) 계전기의 흐로에 각각 제어전원을 인가한 후, 출입문 인터록(Door Interlock) 계전기의 동작과 종합제어장치의 인지상태를 시험용컴퓨터로 확인하여 이상이 없어야 한다.

나) 출입문 동작상태
출입문 인터록(ATC Door Interlock) 흐로에 제어전원을 인가하여 계전기를 동작시키고 시험용컴퓨터를 통하여 출입문의 개폐동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 출입문의 동작을 확인하여 이상이 없어야 하며, 출입문 라미트스위치의 동작과 종합제어장치의 인지상태를 확인하여 이상이 없어야 한다.

다) 출입문 바이패스스위치 동작상태
출입문 인터록(Door Interlock) 흐로에 제어전원을 인가하여 계전기를 동작시키고 출입문바이패스 스위치를 개방시킨 후, 상기 (나)항의 출입문시험과 같이 출입문 동작시험을 실시하여 출입문동작을 확인하여 출입문바이패스 기능에 이상이 없어야 하며, 출입문바이패스를 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

(8) 실내조명 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
가) 교류 형광등 동작상태
나) 직류 형광등 동작상태
다) 비상등 동작상태

다. 시험방법 및 판정기준
가) 교류 형광등 동작상태

시험용 컴퓨터를 이용하여 교류형광등의 동작을 종합제어장치에 명령한 후, 종합제어 장치의 출력과 교류형광등계전기의 동작을 확인하여 이상이 없어야 하며, 교류형광 등계전기의 동작상태를 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

나) 직류 형광등 동작상태

시험용 컴퓨터를 이용하여 직류형광등의 동작을 종합제어장치에 명령한 후, 종합제어 장치의 출력과 직류형광등계전기의 동작을 확인하여 이상이 없어야 하며, 직류형광 등계전기의 동작상태를 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

다) 비상등 동작상태

시험용 컴퓨터를 이용하여 비상등의 동작을 종합제어장치에 명령한 후, 종합제어장치 의 출력과 비상등계전기의 동작을 확인하여 이상이 없어야 하며, 비상등계전기의 동작을 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

(9) 냉방장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
가) 냉방장치 접촉기 동작상태
나) 온도계전기 동작상태

다. 시험방법 및 판정기준
가) 냉방장치 접촉기 동작상태

시험용 컴퓨터를 이용하여 냉방장치의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 냉방장치 계전기의 동작을 확인하여 이상이 없어야 하며, 종합제어장치의 인지상태를 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

나) 온도계전기 동작상태

냉방장치 온도계전기를 수동으로 동작시킨 후, 온도계전기의 동작을 확인하여 이상이 없어야 하며, 종합제어장치의 인지상태를 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

(10) 난방장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
난방장치 접촉기 동작상태
다. 시험방법 및 판정기준
가) 난방장치 접촉기 동작상태
시험용 컴퓨터를 이용하여 난방장치의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 난방장치 계전기의 동작을 확인하여 이상이 없어야 하며, 종합제어장치의 인지상태를 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

나. 측정항목
나) 환기장치 동작상태
다. 시험방법 및 판정기준
가) 환기장치 동작상태
시험용 컴퓨터를 이용하여 환기장치의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 환기장치의 동작상태를 확인하여 이상이 없어야 하며, 환기장치의 동작을 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.
나) 송풍기 접촉기 동작상태
시험용 컴퓨터를 이용하여 송풍기의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 송풍기의 동작상을 확인하여 이상이 없어야 하며, 송풍기의 동작을 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

(11) 환기장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
나) 환기장치 접촉기 동작상태
다. 시험방법 및 판정기준
가) 환기장치 접촉기 동작상태
시험용 컴퓨터를 이용하여 환기장치의 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 환기장치의 동작상태를 확인하여 이상이 없어야 하며, 환기장치의 동작을 종합제어장치가 인지하였음을 시험용 컴퓨터로 확인하여 이상이 없어야 한다.

(12) 승객경보장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 축전지 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전원을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치를 조작/동작 상태를 확인할 수 있도록 시험용 컴퓨터와 통신으로 연결한다.

나. 측정항목
승객경보장치 동작상태
다. 시험방법 및 판정기준
승객경보장치의 동작버튼을 누른 후, 종합제어장치의 입력단을 확인하고, 시험용컴퓨터를 이용하여 종합제어장치가 인지하였음을 확인하여 이상이 없어야 하며, 승객경보장치 경보램프의 점/소등 동작을 종합제어장치에 명령한 후, 종합제어장치의 출력과 경보램프의 동작을 확인하여 이상이 없어야 한다.

(13) 신호장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 촉진기 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전반을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 종합제어장치가 신호장치에 대해 필요한 정보의 정확한 전송이 가능한 상태에서 시험한다.

나. 측정항목
신호장치 동작상태
다. 시험방법 및 판정기준
가) 신호장치 동작상태
신호장치에 전원이 공급될 때 각 장치들이 정상기동하고 종합제어장치와 장치간의 통신에러가 검지되는지를 확인하고 운전과 자세신호설비와 연계한 운전모드별 종합제어장치의 기능동작을 확인하여 이상이 없어야 한다.

(14) 방송장치/표시기장치 연계동작 시험
가. 시험조건
가) 시험대상 차량에 설치된 촉진기 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전반을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 방송장치와 표시기장치에 대해 종합제어장치가 필요한 정보를 송수신할 수 있는 상태에서 시험한다.

나. 측정항목
가) 방송장치 동작상태
나) 표시기장치 동작상태
다. 시험방법 및 판정기준
가) 방송장치 동작상태
차내 방송장치에 대해 필요한 정보를 종합제어장치가 정상적으로 제공하는지를 확인하여 이상이 없어야 한다.
나) 표시기장치 동작상태
차내 표시기장치에 대해 필요한 정보를 종합제어장치가 정상적으로 제공하는지 여부를 확인하여 이상이 없어야 한다.

(15) 연계장치와의 통신 및 입출력확인시험
가. 시험조건
가) 시험대상 차량에 설치된 촉진기 또는 외부전원을 인가하여 차량을 정상적으로 기동시킨다.
나) 전차선은 전반을 인가하지 않은 상태로 시험한다.
다) 종합제어장치를 동작시킨다.
라) 각 연계장치에 대해 종합제어장치가 필요한 정보를 송수신 및 입출력 할 수 있는 상태에서 시험한다.
나. 측정항목
연계장치와의 통신 및 입출력 상태 확인
다. 시험방법 및 판정기준
종합제어장치와 연계된 각 장치와의 통신 확인시험을 위해 통신 프로토콜 확인 및 통신
규격별 전송속도를 확인하여야 하며 디지털, 아날로그 신호의 입출력이 정상적으로 동
작하는지 여부를 확인하여 이상이 없어야 한다.
4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 측정항목별 결과
(5) 기타 특이사항

5.3.14 제동시험
1) 적용범위
해당 칠도차량에 적용되는 제동장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우
에 적용된다.
2) 용어정의
(1) 제동제어유니트(BCU) : 제동지령을 받아 제동제어 목표량에 접근하도록 제동압력을 제어
하기 위한 제동제어유니트이다.
(2) 활주 : 제동시 차량에 영향을 미치는 제동력이 차량의 점착력보다 큰 경우 발생하는 차륜
과 주행빔 사이의 미끄럼 현상.
(3) 디스크 제동 : 디스크에 마찰재를 압부시켜 체결하는 제동.
(4) 상용전제동 : 정상운전시 사용되는 제동에서 압력이 작용 가능한 최대상용제동.
(5) 저억한계 : 시간에 대한 감속도 변화율의 한계
(6) 제동 총기시간 : 제동실린더로 제동압력이 유입되는 시간부터 제동실린더의 압력이 최대
치의 임의의 값이 되는 시간까지의 시간
(7) 제동 완해시간 : 전제동 후 제동실린더의 압력이 임의의 값이 되는 시간까지의 시간
3) 참고규격
(1) IEC 62313: Railway Applications. Power supply and rolling stock. Technical criteria
for the coordination between power supply (substation) and rolling stock to achieve
interoperability
(2) KS A 0006: 시험장소의 표준상태
(3) KS C IEC 61133: 전기 건인 및 전진 건인 칠도 차량의 사용 전 완성차 시험 방법.
(4) KS B 5305: 브로돈관 압력계
(5) KS C 0704: 제어기의 절연거리, 절연저항 및 내전압
(6) KS R 9144: 칠도차량부품의 진동시험 방법
(7) KS R 9146: 칠도차량부품의 충격시험 방법
(8) KS R 9156: 칠도차량용 전자기기의 시험통칙
(9) KS R 9213: 칠도차량부품 - 고온 및 저온 시험 방법
(10) EN 14531-1: Railway applications. Methods for calculation of stopping distances,
slowing distances and immobilization braking. General algorithms

(11) EN 14531-6: Railway applications. Methods for calculation of stopping and slowing distances and immobilization braking. Step by step calculations for train sets or single vehicles

(12) EN 15663: Railway applications. Definition of vehicle reference masses

(13) EN 14198: Railway applications. Braking. Requirements for the brake systems of trains hauled by a locomotive

(14) EN 15179: Railway applications. Braking. Requirements for the brake system of coaches

(15) EN 15220-1: Railway applications. Braking. Requirements for the brake systems of trains hauled by a locomotive

(16) EN 15355: Railway applications. Braking. Distributor valves and distributor-isolating devices

(17) EN 15595: Railway applications. Braking. Wheel slide protection

(18) EN 15611: Railway applications. Braking. Relay valves

(19) EN 15612: Railway applications. Braking. Brake pipe accelerator valve

(20) EN 15625: Railway applications. Braking. Automatic variable load sensing devices

(21) KS C IEC 62279: 철도용 전기설비의 통신 및 신호처리 시스템과 제어 및 보호 시스템에 관한 소프트웨어

(22) IEC/TR 61508-0: Functional safety of electrical/electronic/programmable electronic systems. Functional safety and IEC 61508

(23) UIC 544-1: Brakes - Braking power

(24) UIC 544-2: Conditions to be observed by the dynamic brake of locomotives and motor coaches so that the extra braking effort produced can be taken into account for the calculation of the braked-weight

(25) UIC 540: Brakes - Air Brakes for freight trains and passenger trains

(26) UIC 541-5: Brakes - Electropneumatic brake (ep brake) - Electropneumatic emergency brake override (EBO)

(27) EN 13452-1: Braking-Mass transit brake systems (Part 1: Performance requirement)

(28) EN 13452-2: Braking-Mass transit brake systems (Part 2: Methods of test)

4) 시험차량의 구성

(1) 시험 대상 차량의 구성

완성차량별로 제동시험을 실시하여야 한다. 시험에서 사용되는 각각의 기능품들은 단품 및 구성품 상태에서 각각의 기술기준에서 요구하는 성능을 만족하는 제품을 이용하여 구성되어야 한다.

(2) 완성차의 편성시험

완성차량의 개별시험을 통과한 차량을 조합 편성하여 영업열차로 구성하여야 한다. 편성의 제동시험은 상용제도와 비상제도를 구분하여 실시하고, 하중조건 및 속도조건에 의하여 변화하는 제동력을 모의로 지령하거나 시험선에서 운행조건으로 실시하여야 한다.

5) 시험

(1) 시험조건

가. 시험차량은 정차시험과 운행시험(30 km/h 이상)으로 구분하여 실시하며 모의시험이 가능한 경우에는 모의시험이 충분한지를 검증한 후에 실시한다.
나. 측정은 기계제동과 전기제동의 제동기술을 구분하여 실시한다.
다. 시험하중은 정비중량(W1) 상태로 실시한다.

(2) 완성차량 시험

가. 제동장치 동작시험

가) 상용제동시험

제동장치에 반응하여 초기제동압력 생성 및 중계밸브의 동작으로 BC 압 생성 및 완해가 원활히 동작하는지 확인한다.

나) 비상제동시험

비상제동장치에 반응하여 비상전자밸브의 동작으로 BC 압 생성 및 완해가 원활히 동작하는지 확인한다.

다) 제동불완해/강제완해시험 (해당하는 경우에 한함)

강제완해밸브의 정상동작 확인을 위해 실시한다.

라) 활주제어시험 (해당하는 경우에 한함)

활주방지밸브의 정상작동을 확인하기 위한 시험으로 제동전자제어장치의 시험버튼을 이용하여 실시한다.

나. 제동장치 제어시험 (해당하는 경우에 한함)

가) 주간제어기에 의한 제동 지령제어 시험

나) 제동 레버 및 제동스위치에 의한 제어시험

다) 보조 제동 레버에 의한 제어시험

다. 제동시험 (해당하는 항목에만 한정)

가) 제동제어장치 시험

가) 상용제동시험

나) 비상제동시험

다) 제동불완해/강제완해시험

라) 제동 충기/완해시험

마) 홀딩제동(holding brake) 시험

바) 활주검지, 감시기능 시험(속도센서확인)

나) 기초제동장치

가) 주차제동시험

① 주차제동체결, 완해시험

② 주차제동 압력스위치 동작확인시험

(나) 압력측정 시험

(다) 대차차단장치 성능시험

다) 제동블렌딩 제어장치시험

가) 전기제동요구신호 확인시험

나) 전기제동달성신호 확인시험

(다) 제동블렌딩제어유니트(BBCU) 백업제어시험 (BBCU가 없는 경우)

라) 활주검지 제어시험

가) 활주방지장치 동작확인 시험

(나) 활주방지장치 고장확인 시험

마) 제동불완해 검지시험

가) 각 대차 제동완해 조건에서의 제동불완해 검지
(나) 높이지지기치는 인가시 제동불완해 검지
(다) ATP 상용제동완해 인가시 제동불완해 검지 (해당하는 경우에 한함)
바) 공기압축기 제어시험
 (가) 보조 공기 압축기 제어 시험 (해당하는 경우에 한함)
 (나) 주공기 압축기 제어 시험
사) 공기압축기 시험
 (가) 주공기압축기 시험
 ① 초충기시간 측정 시험
 ② 압력스위치 기동/정지압력 시험
 ③ 안전밸브 작동압력 시험
 ④ 주공기 압력스위치 설정압력 시험
 (나) 보조공기압축기 시험 (해당하는 경우에 한함)
 ① 압력스위치의 기동/정지압력 시험
 ② 안전밸브 작동압력 시험
 ③ 집전장치 상승 초충기 시험
 ④ 보조공기 건조기 재생시험
 (다) 공기누설 시험
 ① 보조공기라인 누설시험
 ② 주공기라인 누설시험
(3) 제동제어장치 시험 (해당하는 경우에 한함)
 가. 견인/제동 모드제어 시험
 나. 견인제동레버시험
 다. 제동레버시험
 라. 구원장치시험
 마. 속도지령장치시험
7) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 날씨
 (2) 시험기의 종류/형식/설치위치 및 구성도
 (3) 사용한 필터특성
 (4) 측정항목별 결과
 (5) 기타 특이사항

5.3.15 냉난방·환기장치 시험
1) 적용범위
 해당 철도차량에 적용되는 냉난방·환기장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 참고규격
 신청자는 아래의 규격 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구사항을 입증 할 수 있다.
 (1) KS R 9198:철도 차량의 냉방 및 난방의 온도 측정 방법
 (2) KS R 9200:철도 차량·환기 성능 시험 방법
철도차량기술기준
KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(3) EN 14813-1: Railway applications. Air conditioning for driving cabs. Comfort parameters
(4) EN 14813-2: Railway applications. Air conditioning for driving cabs. Type tests
(5) EN 14750-1: Railway applications. Air conditioning for urban and suburban rolling stock. Comfort parameters
(6) EN 14750-2: Railway applications. Air conditioning for urban and suburban rolling stock. Type tests
(7) UIC 651: Layout of driver's cabs in locomotives, railcars, multiple-unit trains and driving trailers
(8) UIC 553: Heating, ventilation and air-conditioning in coaches
(9) UIC 553-1: Heating, ventilation and air-conditioning in coaches - Standard tests

3) 시험 방법

(1) 차량 조건
가. 차량편성은 실제 운행편성으로 한다.
나. 측정은 차종(동력차, 부수차 각 1량씩)별로 실시한다.
다. 시험하중은 곡차상태(다만, 측정자 및 측정기자재 포함)로 한다.
라. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.
마. 정지상태에 있고 모든 장치는 정상적으로 작동한 상태여야 한다.

(2) 시험항목

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>세부 시험 항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>운전가동시험</td>
<td>냉방장치시험</td>
</tr>
<tr>
<td></td>
<td>난방장치시험</td>
</tr>
<tr>
<td>온도분포측정시험</td>
<td>냉방온도변화시험</td>
</tr>
<tr>
<td></td>
<td>난방온도변화시험</td>
</tr>
<tr>
<td>환기장치시험</td>
<td>동작시험</td>
</tr>
<tr>
<td></td>
<td>풍량측정시험</td>
</tr>
</tbody>
</table>

(3) 측정 장비
온도계와 통속계는 KS R 9198에서 규정한 열전대(Thermocouple)나 동등 이상의 성능을 가진 성능을 가진 것으로 한다.

(4) 측정방법
가. 운전가동시험
가) 냉난방제어장치를 통하여 각 차량의 냉방, 난방장치(Pre-heating 포함)의 동작상태를 확인한다.
나) 운전모드(반냉, 전냉 또는 1/3 난방, 2/3 난방, 전난방 등)가 별도로 있는 경우 각 운전모드에 따라 시험한다.
다) 난방인 경우 모든 차량의 냉방장치가 일시에 가동하지 않고 순차적으로 가동하는지 확인할 수 있어야 한다.
라) 난방인 경우 각 장치의 이상발열이 있는지 확인한다.
나. 온도분포측정시험
가) KS R 9198 또는 EN 14750-2의 냉난방의 온도 측정 방법을 참고할 수 있다.
나) 냉방 및 난방 중간 경우 시간의 경과에 따른 각 지점의 온도를 측정한다.
다) 실내온도가 안정화된 후 일정간격으로 3회 측정한 결과를 평균한다
라) 차량 출입문 개폐시 온도변화를 확인할 수 있도록 일정시간 동안(20초) 지정된 출입문을 개방하여 온도변화를 측정한다. 다만, 외부 환경조건 등을 규정 할 수 없는 경우에는 시험시점의 환경조건을 기준으로 측정하여 참고할 수 있다.
다. 원기장치 시험
가) KS R 9200 철도 차량-환기 성능 시험 방법에 따른다.
나) 운전조건에서 정상동작하는지 확인한다.
4) 결과의 분석
신청자는 EN 14813-1, EN 14813-2, EN 14750-1, EN 14750-2, KS R 9198, KS R 9200, UIC 553, UIC 553-1 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구사항을 입증 할 수 있다.
5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험기의 종류형식설치위치 및 구성도
(4) 측정항목별 결과
(5) 기타 특이사항

5.3.16 기능 및 동작 시험
1) 적용범위
해당 철도차량의 기능 및 동작상태에 대한 설계적합성 및 형식등등성을 시험으로 입증하는 경우에 적용된다. 다만, 세부적인 시험항목, 시험방법 및 기준은 해당 철도차량의 설계특성에 따라 조정될 수 있다.
2) 용어정의
MCB : 주회로 차단기(Main Circuit Breaker)
3) 참고규격
(1) KS C IEC 62279:철도용 전기설비의 통신 및 신호처리 시스템과 제어 및 보호 시스템에 관한 소프트웨어
(2) KS C IEC 61133:전기 건인 및 엔진건인 철도차량의 사용전 완성차 시험방법
(3) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구사항
(4) ISO 3864-1:Graphical symbols. Safety colours and safety signs. Design principles for safety signs and safety markings
(5) EN 15327-1:Railway applications. Passenger alarm subsystem. General requirements and passenger interface for the passenger emergency brake system
(6) EN 13272:Railway applications. Electrical lighting for rolling stock in public transport systems
(7) EN 15153-1:Railway applications. External visible and audible warning devices for trains. Head, marker and tail lamps
(8) EN 15153-2: Railway applications. External visible and audible warning devices for trains. Warning horns
(9) CIE S 004/E: Colours of Light Signals
(10) ISO 11664-1(CIE S 014-1/E): Colorimetry -- Part 1: CIE standard colorimetric observers
(11) UIC 641: Conditions to be fulfilled by automatic vigilance devices used in international traffic
(12) UIC 644: Warning devices used on tractive units employed on international services
(13) UIC 534: Signal lamps and signal-lamp brackets for locomotives, railcars and all tractive and self-propelled stock
(14) UIC 651: Layout of driver’s cabs in locomotives, railcars, multiple-unit trains and driving trailers
(15) UIC 56: Doors, footboards, windows, steps, handles and handrails of coaches and luggage vans
(16) KS R 9159: 철도 차량의 조도 기준 및 측정 방법

4) 시험의 목적 및 종류

완성차상태의 기능 및 동작상태를 확인하기 위한 것으로 다음과 같은 시험을 수행한다.

(1) 제어회로 시험
(2) 시동, 정지 및 운전실 교환시험
(3) 역행시험
(4) 객실/운전실기기 시험
(5) 비상정지설비 시험
(6) 기관사 경계장치 시험 (무인운전 경전철의 경우 설치되는 경우에만 적용)
(7) 속도연산장치 시험
(8) 고장기록확인 시험
(9) 출입문작동 시험
(10) 철도소프트웨어 시험

5) 시험 방법 및 판단기준

(1) 제어회로 시험

가. 공통시험조건

가) 차량은 실제운행 편성(공차)으로 정지상태에서 시행한다.
나) 모든 접촉기(contactor) 연결 상태가 양호한지 확인한다.
다) 차량내 차단기 및 스위치의 정상상태를 확인한다.
라) 해당 기능 및 동작확인을 위한 기준 및 상세절차는 안전에 유의하여 시험을 진행한다.

나. 시험방법 및 판단기준

가) 축전지 제어확인

가선전압이 가압되지 않은 상태에서 축전지 전압을 투입 및 차단했을 때 규정된 기준 값을 만족하는지를 확인하여야며, 축전기 전압의 현시수치와 측정값이 일치하는지를 확인한다.

나) 집전장치 제어 확인

가선전압을 가압하지 않고 축전지 투입 상태에서 집전장치 제어범위에 따라 집전장치가 정상적으로 동작하는지를 확인한다. 다만, 제어기능이 있는 집전장치에 한하여 적용한다.
다) 가선전압 차단제어 확인
가) 가선전압이 가압된 상태에서 과전류 및 화재 검지시 가선전압 차단 및 차단복귀명령에 따른 차단복귀가 정상적으로 동작되는지 확인한다.
라) 주회로 차단기 제어 확인
가) 가선전압을 가압하지 않고 축전차 투입상태에서 주회로 차단기(MCB: main circuit breaker) 투입 및 차단 조건(접지고장, 가선전압 과전류, 객실열감지 등)에서 주회로 차단기가 정상적으로 동작하는지를 확인한다.
마) 주회로 제어기능 확인
가) 정격제어전압 상태에서 제어전원 공급회로, 집전장치 및 주회로차단기 제어회로, 공 기압측기 제어회로, 비상제동 안전루프 회로 등의 주요 제어회로가 정상적으로 동작하는지 확인한다.
바) 기타
가) 보조전원장치가 동작하지 않은 상태에서 동작하는 제어회로에 대해서는 저전압으로 인한 축전차 차단 전압에 대한 동작 여부를 검증한다.

(2) 시동정지 및 운전실 교환시험
가. 공통시험조건
가) 차량은 실제운행 편성(공차)으로 정지상태에서 시행한다.
나) 가선전압은 가압하지 않고, 축전차를 투입한 상태에서 시행한다.
다) 모든 접촉기(contactor) 연결 상태가 양호한 상태에서 시행한다.
라) 차량내 차단기 및 스위치의 정상상태에서 시행한다.
마) 해당 기능 및 동작확인을 위한 기준 및 상세절차는 규정된 절차서에 따라 시행을 진행한다.
나. 시험방법 및 판단기준
가) 운전실 선택제어 확인
(가) 운전실 선택 제어가 정상적으로 동작하는지 확인하는 시험이다.
(나) 운전실 선택을 위한 제어회로전압의 최소, 정상 및 최대값에서 정상동작을 확인한다.
나) 전원 유지제어 확인
(가) 차량의 전원제어가 정상적으로 동작하는지 확인하는 시험이다.
(나) 차량의 전원 유지스위치 동작에 따른 접전장치 상태를 확인한다.
다) 시동, 정지 확인
차량 시동 및 정지시 축전차 및 주전원차단 동작여부를 확인한다.

(3) 역행시험
가. 공통시험조건
가) 차량은 실제운행 편성(공차)으로 수행한다.
나) 시험차량의 주행이 가능한 시험선로에서 전차선에 전원을 인가한 상태로 시행한다.
다) 각 차량의 제동배관 코크 핸들이 정상위치 및 운전실, 배전판 기기에 정상상태에서 시행한다.
라) 제동장치의 동작이 정상상태인지 확인한다.
마) 해당 기능 및 동작확인을 위한 기준 및 상세절차는 안전에 유의하여 시험을 진행한다.
나. 시험방법 및 판단기준
가) 추진시험
(가) 집전장치 상승 및 MCB 투입상태에서 추진 기능 및 동작을 확인하는 시험이다.
(나) 기동(정지상태), 추가 노치(주행중 가속상태) 및 재 역행(주행중 타행 및 재역행)이 정상적으로 동작하는지를 확인한다.
(다) 최대견인력으로 기동하여 허용 가능한 최고속도까지 가속시키며 가속도(출발 및 가속성능)를 확인한다.

나) 후진시험
어) 잠정장치 상승 및 MCB 투입상태에서 후진 기능 및 동작을 확인하는 시험이다.
나) 역행율에 따른 후진이 정상적으로 동작하는지를 확인한다.

(4) 객실/운전실 기기시험
가) 공통시험조건
어) 원상차 상태에서 시험을 시행한다.
나) 모든 접촉기(contactor) 연결 상태가 양호한지 확인한다.
다) 차량내 차단기 및 스위치의 정상상태를 확인한다.
라) 해당 기능 및 동작확인을 위한 기준 및 상세절차는 안전에 유의하여 시험을 진행한다.

나) 시험방법 및 판단기준
가) 화재감지기
화재감지기가 연기 감지시 감도에 따라 경보음을 정상적으로 동작하는지를 확인한다.
나) 열감지장치
동력차 및 부수차(제어차 포함)의 열감시시스템이 정상적으로 동작하는지를 확인한다.
다) 안전스위치
안전스위치가 정상적으로 동작하는지를 확인한다.
라) 방송장치
어) 차량내 화재감지, 화재경보물의 송출하고, 비상일람인지에 따라 경고음을 정상적으로 동작하는지를 확인한다.
나) 기관사에 의해서 화재관련 내용을 방송 및 표시장치를 통해 송출하여야 한다.
다) 운전실-운전실간 호출 및 통화가 정상적으로 동작하는지를 확인한다.
라) 승무원이 승차하는 경우, 기관사-승무원간 호출 및 통화가 정상적으로 동작하는지 확인한다.
마) 승무원이 승차하는 경우, 승무원-승무원간 호출 및 통화가 정상적으로 동작하는지 확인한다.
바) 기관사의 방송음이 명료하게 전달되는지 명료도를 측정하여 확인한다.
 사) 승무원이 승차하는 경우, 승무원의 방송음이 명료하게 전달되는지 명료도를 측정하여 확인한다.
아) 기 정의된 방송우선순위가 정상적으로 동작하는지 확인한다.
자) 승무원이 승차하는 경우, 방송과 승무원통화가 동시에 정상적으로 동작하는지 확인한다.
차) 방송제어기, 멀티미디어(오디오/비디오) 서버 장치의 이중화가 정상적으로 동작하는지 확인한다.
카) 경보음의 음량이 기준을 만족하는지 확인한다
타) 비상통화장치가 정상적으로 동작하는지 확인한다.
파) 정역구간 진입전 경보음이 기준을 만족하는지 확인한다. 다만, 운영노선에 적절한 지상설비가 구축되어 있는 경우에 한한다.

마) 승객정보장치
(가) 실내 안내 표시 장치의 표시정보 현시 및 통신상태감지기 정상적으로 동작하는지 확인한다.
(나) 실외 안내 표시 장치의 표시정보현시 및 통신상태감지기 정상적으로 동작하는지 확인한다.

바) 승객경보장치
(가) 승객경보장치의 동작버튼을 누르 후, 운전실 모니터와 경보램프, 부저 등의 동작을 확인 한다.
(나) 경보인식버튼을 조작한 후 승객경보장치의 동작을 확인한다.

사) 조명
(가) 가설기압 및 축전기가 투입된 상태에서 시험을 수행한다.
(나) 전조등 선택조건에 따라 정상적으로 동작하는지 확인한다.
(다) 운전실조명의 점등 및 조도조절이 정상적으로 동작하는지 확인한다.
(라) 기기실 조명이 조건에 따라 정상적으로 동작하는지 확인한다.
(마) 객실 조명이 조건에 따라 정상적으로 동작하는지 확인한다.
(바) 충광조도제어기가 조건에 따라 정상적으로 동작하는지 확인한다.
(사) 규정된 차량의 위치 및 기능에 따른 조도측정위치에서 측정된 조도가 기준을 만족하는지를 확인한다.

아) 경적 동작시험
운전실내 경적의 고음 및 저음을 신청자(제작자)가 제시한 기준에 따라 측정하여 정상적으로 동작함을 확인한다.

자) 와이퍼 시험
위서액 분사시 와이퍼의 속도별 동작 및 비상와이퍼가 정상적으로 동작하는지 확인 한다.

(5) 비상정지설비 시험
가. 공통시험조건
(가) 차량 정지상태에서 시행한다.
(나) 가상전압을 가압하지 않고, 축전기 전원을 투입한 상태에서 시행한다.
(다) 시험을 위한 차량기기의 정상상태에서 시행한다.
(라) 모든접촉기(contactor) 연결 상태가 양호한지 확인한다.
(마) 차량내 차단기 및 스위치의 정상상태를 확인한다.
(바) 해당 기능 및 동작확인을 위한 기준 및 상세절차는 규정된 절차서에 따라 안전에 유의하여 시험을 진행한다.

나. 시험방법 및 판단기준
가) 전원투입 및 차단시험
비상정지설비의 기능 및 동작확인을 위한 전원 투입 및 차단이 정상적으로 동작함을 확인한다.
(나) 자기전단기능 시험
비상정지설비의 정상상태 및 관련장치간의 연결상태가 정상적인지를 확인한다.
(다) 입출력 인터페이스 확인시험
제동출력 등 입출력 인터페이스가 정상적인지를 확인한다.
(라) 의사 방호 송수신 확인시험
비상정지설비의 방호메세지가 정상적으로 송수신 되는지지를 확인한다.
마) 안전보호제어시험
송신차, 수신차 간에 열차방호 상황발생/해제가 정상적으로 동작되는지를 확인한다.
(6) 기관사 경계장치 시험
가) 공통시험조건
나) 속도시뮬레이터를 사용하여 속도를 전송한다.
나) 해당 기능 및 동작성을 위한 기준 및 상태체크는 안전에 유의하여 시험을 진행한다.
나. 시험방법 및 판단기준
가) 기관사 경계장치
속도시뮬레이터에 의해 속도 전송에 따른 취급여부에 따라 기관사 경계장치가 정상적으로 동작하는지를 검토 및 표시등으로 확인한다.
(7) 속도연산장치 시험
가) 공통시험조건
나) 가속접촉기 접촉부가 정상으로 동작하고, 축전기 전원을 투입한 상태에서 시행한다.
나. 시험방법 및 판단기준
가) 속도신호 연산기능시험
나) 속도시뮬레이터로 입력된 속도와 속도계, 속도지령장치의 속도가 일치하는지를 확인한다.
나) 속도오류 및 속도 불일치 기능이 정상적으로 동작하는지 확인한다.
(8) 고장기록확인시험
가) 공통시험조건
나) 운행과정 중이라도 정상기술된 상태에서 수행한다.
나) 모든 접촉기(contactor) 연결 상태가 양호한지 확인한다.
나. 시험방법 및 판단기준
차량에 관련된 정의된 기기의 비정상조건시 고장확인시, 알람 및 저장이 정상적으로 수행되지 확인한다.
(9) 출입문 작동시험
가) 공통시험조건
나) 정차상태에서 차량의 공압 및 전원을 인가한 상태에서 시행한다.
나) 모든 접촉기(contactor) 연결 상태가 양호한지 확인한다.
나. 시험방법 및 판단기준
가) 출입문 시험
나) 출입문 작동시험에 따라 제시된 시간내에 정상적으로 동작하는지를 확인한다.
(나) 승강문의 장애물 감시 및 재열림 기능이 정상적으로 동작하는지를 확인한다. 장애물의 크기를 제작자 제안한 기준을 따른다.
(다) 차량을 가상의 운행조건일 때, 승강문이 개방되지 않음을 확인한다.
(라) 운전실 및 승무원에 의하여 승강문이 정상적으로 동작하는지를 확인한다.
나) 객실출입문 시험
(가) 객실출입문 취급명령에 따라 제시된 시간내에 열림과 닫힘이 정상적으로 동작하는 지를 확인한다.
(나) 객실의 통행감지센서가 정상적으로 동작하는지를 확인한다.
(다) 객실출입문의 장애물 감시 및 재열림 기능이 정상적으로 동작하는지를 확인한 다. 장애물의 크기를 제작자 제안한 기준을 따른다.
(10) 철도 소프트웨어
가. 공통시험조건
가) 정차상태에서 차량의 전원을 인가한 상태에서 시행한다.
나) 모든 접촉기(contactor) 연결 상태가 양호한지 확인한다.
다) 차량내 차단기 및 스위치의 정상상태를 확인한다.
라) 해당 기능 및 동작확인을 위한 기준 및 심사절차는 규정된 절차서에 따라 안전에 유의하여 시험을 진행한다.
나. 시험방법 및 판단기준
설계적합성검사에서 승인받은 모든 철도소프트웨어의 기능 및 동작을 확인한다.
6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 시험품의 구성 상태 및 시험품
(3) 시험한 차량
(4) 측정항목별 결과
(5) 기타 특이사항
5.3.17 지상설비연계동작시험
1) 적용범위
해당 철도차량에 적용되는 차상신호장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
(1) ATO : 열차자동운전장치(Automatic Train Operation)
(2) TWC : 차상 지상간 통신장치(Train Wayside Communication)
(3) ATP : 열차자동방호장치(Automatic Train Protection)
3) 시험의 종류 및 목적
본 규격은 완성차 상태에서 차량에 설치되는 각종 기기중 지상설비와 연계하여 운용되는 신호 장치, 열차무선장치, 방송장치 등의 지상설비 연계동작을 확인하기 위한 시험이다. 행되는지 확인하기 위한 시험이다.
(1) 신호장치 시험 : 신호장치의 기능을 시험하기 위한 항목이다.
(2) 열차무선장치 지상연계 시험 : 차상열차무선장치와 지상열차무선장치와의 통화확인으로 열차무선장치의 성능을 확인하기 위한 시험이다.
4) 시험 방법 및 판정기준
 (1) 시험조건
 가. 집전장치의 상승 및 하강이 가능하여야 한다.
 나. 궤장 구내 시험선로가 있는 경우 동적상태로 시험을 수행하고, 없는 경우 차량이 정지
 된 상태에서 시험을 수행한다.
 (2) 신호장치 시험
 가. 시험조건
 지상에 ATP, ATO, TWC 등의 모의 지상자가 설치되어 있어야 한다.
 나. ATP 신호수신 및 기능시험
 가) 차상신호장치에 ATP 장치가 설치되어 있는 경우에 실시한다.
 나) 차량을 모의 ATP 지상자가 설치된 위치로 이동하여(시험선로가 없는 경우 지상자를
 차량 위치로 이동), 차량에서 모의 ATP 지상자를 정상적으로 연계등작하는지 확인
 한다.
 다) 모의 ATP 지상자에서 설정된 지상신호가 차상신호장치에 수신되어 해당하는 제한속도
 로 차상신호장치에 의해 차량의 속도제어를 확인한다.
 다. ATO 신호수신 및 기능시험
 가) 차상신호장치에 ATO 장치가 설치되어 있는 도시철도차량(모노레일경전철)의 경우
 에 실시한다.
 나) 차량을 모의 ATO 지상자가 설치된 위치로 이동하여(시험선로가 없는 경우 모의 지상
 자를 차량 위치로 이동), 차량에서 모의 ATO 지상자가 정상적으로 동작하는지 확인
 한다.
 다) 모의 지상자에서 설정된 정보가 차량에서 해당하는 제어가 수행되는지 확인한다.
 라. 신호장치 비정상상태의 시험
 가) 주/보조 차상신호장치의 자동절체 시험 : 주 차상신호장치에 고장이 발생하였을 경우
 보조 차상신호장치로 자동절차가 적합하게 이루어지는지 확인한다. 단, 장치의
 특성상 불가피할 경우 그러하지 아니한다.
 나) 오동작 시험 : 차상신호장치와 통신 불능 등 운행 중 발생할 수 있는 비정상상태에
 서 차상장치가 적합하게 동작하는지 확인한다.
 다) 후진검지 및 제동체결 시험 : 열차의 운행방향이 전반인 상태에서 열차가 후진하게
 되는 경우, 제동이 체결되는지 확인한다. 단, 해당 기능을 가지고 있는 경우에 적
 용한다.
 (3) 열차무선장치 시항연계 시험
 가. 시험조건
 가) 모든 차상열차무선장치와 지상열차무선장치에 전원이 인가되어 있어야 하며 지상
 기지국에서 열차번호를 알고 있어야 한다.
 나. 시험방법
 가) 기지국에서의 호출시험을 하여 이상이 없어야 한다.
 나) 열차에서의 호출시험을 하여 이상이 없어야 한다.
 다) 제어패널 조작시험을 하여 이상이 없어야 한다.
 라) 전후방 열차무선장치 점체시험을 하여 이상이 없어야 한다. 다만, 차량발주자가 요구
 하는 경우에 한다.
 마) 시험결과는 육성으로 확인하여 이상이 없어야 한다.
5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 시험품의 구성 상태 및 시험품
(3) 시험한 차량
(4) 측정항목별 결과
(5) 기타 특이사항

5.3.18 중련운전시험
1) 적용범위
해당 철도차량의 중련운전에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다. 중련 또는 복합운행 관련 시험은 발주자의 요구사항이 있는 경우에만 실시한다. 또한 중련 또는 복합운행이 실시되지 않는 차량은 구원운전을 위한 세부항목만 선택적으로 시행 한다.
2) 용어정의
평형속도: 역행 시 견인력과 주행저항이 균형을 이루어 결정되는 속도를 말한다.
3) 시험 방법
(1) 시험종류
 가. 중련운전 제어시험
 나. 중련운전 편성시험
 다. 편성연결 시 제어시험
 라. 고장기록확인시험
마. 원격제어시험
(2) 중련운전제어시험
분리제어 시험을 위해서는 연결기가 체결된 상태여야 하므로 연결기를 수동으로 체결상태를 만들고, 연결거 분리 시 전방 압축공기통 등의 연결부는 임의로 누기 되지 않도록 막는다.
(3) 중련운전편성시험
 가. 편성 연결시험: 열차정보모니터에서 중련편성연결 화면이 현시되는지 확인한다.
 나. 편성 분리시험: 열차정보모니터에서 중련편성분리 표시등의 점등을 확인한다.
(4) 편성 연결 시 제어시험
 가. 편성 연결된 후 차량 기동 전 상태로 한다.
 나. 선두편성의 선두 운전실에서 실시한다.
(5) 고장기록확인시험
 가. 편성 연결된 상태에서 실시한다.
 나. 차량 정상기동 조건에서 실시한다.
(6) 원격제어시험
 가. 사령실에서 실내조명 점등 원격신호 인가 시, 객실 조명 점등이 되는지 확인한다.
 나. 사령실에서 실내조명 졸동 원격신호 인가 시, 객실조명 졸동이 되는지 확인한다.
 다. 사령실에서 출입문 열기 원격신호 인가 시, 오른쪽 승강문이 열리는지 확인한다.
4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
5.3.19 화재감지장치시험

1) 적용범위

해당 철도차량에 적용되는 화재감지장치-종합제어장치 간의 기능과 동작의 정확성 및 안전성을 시험으로 입증하는 경우에 적용된다. 다만, 해당기능이 종합제어장치가 아닌 다른 장치가 수행하는 경우 해당 장치를 시험한다.

2) 용어정의

(1) "열감지기" 라 함은 화재가 났을 때 온도 상승을 자동적으로 감지하여 수신기에 신호를 보내는 장치이다.
(2) "연기감지기" 라 함은 화재 발생에 의한 연기를 감지하여 화재의 발생 이전에 보다 빨리 사고를 발견하는 화재 감지기의 일종이다.
(3) "열연복합 감지기" 라 함은 화재에 의한 온도 상승 또는 연기를 감지하여 수신기에 신호를 보내는 장치이다.

3) 시험방법

(1) 열/연기 감지 동작 확인 시험

기, 열감지 동작 확인 시험

온풍기나 헤어 드라이기를 이용하여 감지기에서 약 40~60cm 떨어져 약 1~2분간 열을 가하였을 때 차량의 수신기를 통하여 화재 경보가 발생하고, 종합 제어장치를 통해 화재 신호가 출력(경보)이 되는지 확인한다.
나, 연기감지 동작 확인 시험

테스트용 연기 스프레이를 이용하여 약 20~30cm 떨어진 곳에서 2~3회 분사하였을 때 차량의 수신기를 통하여 화재 경보가 발생하는지 확인하고, 종합 제어장치를 통해 화재 신호가 출력(경보)이 되는지 확인한다.

4) 결과의 분석

(1) 감지기의 종류(열/연기/열연복합)에 따라 알맞은 신호 출력 조건을 형성해 주어야 한다.
(2) 시험 차량의 종합제어장치 화재 출력(경보) 조건을 확인하여 모드가 얇을 경우를 확인한다.
 (감지기에 1대에서 화재신호 출력 시 또는 감지기 2대에서 화재신호 출력 시 종합 제어장치에 화재신호가 출력 되는지 확인.)
(3) 종합 제어장치 화면에 화재발생 표시 및 화재발생 차량이 표시되어야 한다.

5) 평가 기준

설계적합성검사의 결과에 따른 각 시험항목별 동작 기준 및 성능을 만족하여야 한다.

6) 시험기록

기록항목에는 다음과 같은 사항을 기록한다.

(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험자 및 검사자
(4) 측정 항목별 결과
(5) 기타 특이사항

5.4 시운전시험

5.4.1 역행시험
1) 적용범위
 해당 철도차량의 역행성능에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
 평형속도 : 역행 시 견인력과 주행저항이 균형을 이루는 속도를 말한다.
3) 시험 구분

<table>
<thead>
<tr>
<th>시험항목</th>
<th>형식승인</th>
<th>완성검사</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>기동시험</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>추가노치시험</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>재역행시험</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>점착성능시험</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>5</td>
<td>구배기동시험</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>가속도시험</td>
<td></td>
<td>○</td>
</tr>
</tbody>
</table>

4) 시험 항목
 (1) 기동시험
 차량이 정지상태에서 기동 시 제어성능을 확인하기 위하여 실시한다.
 (2) 추가노치시험
 차량이 기동하여 가속중인 상태에서 노치 변경시의 제어성능을 확인하기 위하여 시행한다.
 (3) 재역행시험
 차량이 주행 중 타행 및 재역행제어를 하였을 때 제어성능을 확인하기 위하여 시행한다.
 (4) 점착성능시험
 역행 중 공전발생 시의 점착제어성능을 확인하기 위하여 시행한다.
 (5) 구배기동시험
 차량이 경사로 출발 시 구원/개방운전 상태에서 제어성능을 확인하기 위하여 실시한다.
 (6) 가속도시험
 출발 및 가속성능이 규정에 적합한지 확인하고, 출발 및 가속하는 중 기기 및 제어장치가 원활히 작동하는지 확인하기 위하여 실시한다.

5) 시험 방법 및 판정기준
 (1) 일반사항
 가) 하중조건
 가) 형식승인 시는 공차 및 만차 하중조건 모두 실시한다.
 나) 완성검사 시는 공차 하중조건으로 한다.
나. 시험위치
가) 시험결과를 측정하기 위한 측정차량은 제어차와 제어차에 연결된 동력차로 한다.
나) 추진제어용 전력변환장치 등이 혼합하여 설치되는 차량형식의 경우 5)-(2)-나. 측정항목의 측정이 용이한 차량으로 할 수 있다.
(2) 기동시험
가. 시험조건
가) 결로, 결빙이 없는 건조선로에서 시행한다.
나) 시험 시 운전실을 교환하며 정량운행 조건으로 시행한다.
다) 가선은 열차운행에 필요한 전원을 공급할 수 있어야 한다.
라) 시험차량은 운행편성으로 한다.
나. 측정항목
가) 가선으로부터 집전되는 전압 및 전류
나) 추진제어용 전력변환장치로 입력되는 전압 및 전류
다) 건인전동기로 입력되는 전압 및 전류의 순시치 및 실험치
라) 건인력 지령치
마) 추진제어용 전력변환장치로 입력되는 역행 지령치
바) 추진제어용 전력변환장치의 건인력 제어를 위한 지령치 및 달성치
자) 제어차 및 동력차의 제동압력
아) 차량의 주행가속도
자) 차량의 주행속도
다. 시험방법 및 판정기준
가) 차량이 정지상태에서 주간제어기의 각 노치(Notch)별로 기동하여 평형속도에 도달할 때까지 기동상태에 이상이 없어야 한다.
나) 주간제어기의 각 노치별로 도달한 평형속도가 규정에 적합한지 확인한다.
다) 차량이 정지상태에서 추진조작으로 기동하여 기동상태에 이상이 없어야 한다.
라) 시험 중 가속도 변화율(Jerk)이 규정에 적합하여야 한다.
(3) 추가노치시험
가. 시험조건
시험조건은 5)-(2)-가와 동일하다.
나. 측정항목
측정항목은 5)-(2)-나와 동일하다.
다. 시험방법 및 판정기준
가) 차량이 정지상태에서 가속 중 주간제어기의 노치를 변경하였을 때 가속상태에 이상이 없어야 한다.
나) 주간제어기의 각 노치별로 도달한 평형속도가 규정에 적합한지 확인한다.
다) 차량이 정지상태에서 추진조작으로 기동하여 기동상태에 이상이 없어야 한다.
라) 시험 중 가속도 변화율(Jerk)이 규정에 적합하여야 한다.
(4) 재역행시험
가. 시험조건
시험조건은 5)-(2)-가와 동일하다.
나. 측정항목
측정항목은 5)-(2)-나와 동일하다.
다. 시험방법 및 판정기준
가) 차량이 주간제어기를 역행, 타행, 역행의 순서로 조작하였을 때 차량의 가속상태에 이상이 없어야 한다.
나) 차량의 운행조건을 고려하여 다양한 노치의 조건이 시험되도록 적절히 변경한다.
다) 시험 중 가속도 변화율(Jerk)이 규정에 적합하여야 한다.

(5) 점착성능시험
가. 시험조건
시험조건은 5)-(2)-가와 동일하다.
나. 측정항목
측정항목은 5)-(2)-나와 동일하다.
다. 시험방법 및 판정기준
가) 주행범과 차륜사이의 점착조건이 악화되어 공전이 발생하였을 때 재점착 제어가 이상 없이 이루어져야 한다.
나) 시험방법은 다음과 같다.
 ▶ 정지 → 살수 → 4N(허용최고속도) → 타행 → 정지
 ▶ 정지 → 4N(정출력 영역 시작 속도)→ 살수 → 4N(허용최고속도) → 타행 → 정지

(6) 구배기동시험
가. 시험조건
가) 경사도가 노선최대인 경사로의 오르막에서 시험한다.
나) 시험차량을 동일한 편성의 편성열차와 연결하여 구원운전 상태로 하거나, 동거의 부하조건이 되도록 동력차의 일부를 개방한다.
나. 측정항목
측정항목은 5)-(2)-나와 동일하다.
다. 시험방법 및 판정기준
차량이 정지상태에서 최대긴장력으로 가속조작을 하였을 때 후퇴 없이 기동하여야 한다.

(7) 가속도시험
가. 시험조건
가) 직선평탄구간에서 최소 2회 이상 운행하여 측정한다. 선로조건이 적절치 않을 경우 동일 구간에서 각 방향으로 운행하여 측정한 값을 결과 값으로 한다.
나. 측정항목
측정항목은 5)-(2)-나와 동일하다.
다. 시험방법 및 판정기준
가) 차량을 최대긴장력으로 기동, 가속시키며 측정항목을 일정한 시간간격으로 기록한다.
나) 주행범 그래프에서 5km/h에서 정토크 영역까지 도달하는데 걸리는 시간을 측정하여 속도를 그 시간으로 나눈 값을 평균가속도로 한다.
다) 수동운전 외에 자동 및 무인운전 기능이 있는 경우 각각의 운전모드에 대하여 시험한다.
라) 하중조건에 따라 측정한 평균가속도는 규정된 가속도 이상이어야 한다. 다만, 규정
되지 않은 가속도의 경우, 0.97m/s² 이상을 적용한다.
마) 측정 가속도 그래프에서 가장 큰 가속도 변화율을 보이는 구간을 선택하여 저크 (Jerk)를 계산하였을 때 규정한 값을 초과하지 않아야 한다.
바) 각 기기의 동작 및 상태가 정상인가를 확인하고 이상이 없어야 한다.
사) 역행지령 후 간인력이 발생하기까지의 지연시간을 측정한다.

5.4.2 제동시험
1) 적용범위
해당 철도차량에 적용되는 제동장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
(1) 제동제어유니트 (BCU) : 제동지령을 받아 제동제어 목표량에 접근하도록 제동압력을 제어하기 위한 제동제어유니트이다.
(2) 활주 : 제동시 차륜에 영향을 미치는 제동력이 차륜의 점착력보다 큰 경우 발생하는 차륜과 주행면 사이의 미끄럼 현상
(3) 디스크 제동 : 디스크에 마찰재를 압부시켜 체결하는 제동
(4) 상용전제동 : 정상운전시 사용되는 제동에서 작용 가능한 최대상용제동
(5) 저크한계 : 시간에 대한 감속도 변화율의 한계
(6) 비상제동 : 열차가 비상상황이 발생 시에 제동을 체결하여 급히 정차하는 제동
(7) 공주시간 : 제동지령이 발생한 순간부터 제동작용이 효과적으로 이루어지는 순간까지의 시간을 측정하여 유 효제동이 신속히 이루어지는 시간
(8) 완해시간 : 전제동 후 제동실린더의 압력이 임의의 값이 되는 순간까지의 시간
3) 참고규격
(1) IEC 62313 Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
(2) KS A 0006 : 시험장소의 표준상태
(3) KS C IEC 61133, 전기 기기 및 안전 기기 철도 차량의 사용 전 완성차 시험 방법. - 6. 본선시험 " 6.5 선로 제동 시험"
(4) KS C 0704 : 제어기기의 절연거리, 절연저항 및 내전압
(5) KS R 9144 : 철도차량부품의 전동시험 방법
(6) KS R 9146 : 철도차량부품의 충격시험 방법
(7) KS R 9156 : 철도차량용 전자기기의 시험통칙
(8) KS R 9213 : 철도차량부품 - 고온 및 저온 시험 방법
(9) KS C IEC 60850:철도용 간인 시스템의 공급 전압
(10) IEC 62313: Railway applications - Power supply and rolling stock - Technical criteria for the coordination between power supply (substation) and rolling stock
(11) EN 14531-1: Railway applications. Methods for calculation of stopping distances, slowing distances and immobilization braking. General algorithms
(12) EN 14531-6: Railway applications. Methods for calculation of stopping and slowing distances and immobilization braking. Step by step calculations for train sets or single vehicles
(13) KS C IEC 61133: 전기 견인 및 엔진 견인 철도 차량의 사용 전 완성차 시험 방법
(14) EN 15663: Railway applications. Definition of vehicle reference masses
(15) EN 14198: Railway applications. Braking. Requirements for the brake systems of trains hauled by a locomotive
(16) EN 15179: Railway applications. Braking. Requirements for the brake system of coaches
(17) EN 15220-1: Railway applications. Brake indicators. Pneumatically operated brake indicators
(18) EN 15595: Railway applications. Braking. Wheel slide protection
(19) EN 15611: Railway applications. Braking. Relay valves
(20) EN 15612: Railway applications. Braking. Brake pipe accelerator valve
(21) EN 15625: Railway applications. Braking. Automatic variable load sensing devices
(22) EN 15663: Railway applications. Definition of vehicle reference masses
(23) KS C IEC 61133: 전기 견인 및 엔진 견인 철도 차량의 사용 전 완성차 시험 방법
(25) UIC 544-1: Brakes – Braking power
(26) UIC 544-2: Conditions to be observed by the dynamic brake of locomotives and motor coaches so that the extra braking effort produced can be taken into account for the calculation of the braked-weight
(27) UIC 540: Air Brakes for freight trains and passenger trains
(28) UIC 541-5: Brakes – Electropneumatic brake (ep brake) – Electropneumatic emergency brake override (EBO)
(29) EN 13452-1: Braking-Mass transit brake systems (Part 1: Performance requirement)
(30) EN 13452-2: Braking-Mass transit brake systems (Part 2: Methods of test)

4) 시험열차의 구성

(1) 시험 대상 차량의 구성
시험열차는 영업편성 단위로 편성되어야 한다. 시험에서 사용되는 기능품들은 단품 및 구성품 상태와 완성차량 제동시험의 각각의 규격서에서 요구하는 성능을 만족하는 시험차량을 이용하여 구성되어야 한다.

(2) 영업 편성시험
완성차량의 개별시험을 통과한 차량을 편성하여 영업열차로 구성하여야 한다. 편성의 제동시험은 상용제동과 비상제동을 구분하여 실시하고, 하중조건 및 속도조건에 의하여 변화하고 영업운행조건으로 실시하여야 한다.

5) 시험

(1) 시험 및 분석 조건
 가. 시험조건
 가) 선로는 평탄하고 직선인 선로에서 실시한다.
 (가) 경사 (gradient): ±4 mm/m 이내, 다만 본선의 특성에 따라 조정하여 실시할 수 있다.
 (나) 휘어짐 (twist): 없음
 (다) 곡선반경 : 20,000m 이상 (다만, 시험노선 조건에 따라 조정할 수 있다)
 (라) 터널: 없음
(마) 선로 접착 상태: 건조/습윤(젖은 조건)
* 선로는 기름이나 기타 이물질에 노출되지 않아야함
나) 선로조건이 적절치 않을 경우 동일구간에서 각 방향으로 운행하여 측정한 값의 평균치를 결과 값으로 하거나, 측정된 감속도의 구배조건에 해당하는 보상차를 적용한다.
다) 차량조건은 제동시험 이전에 다음 사항에 대한 정상작동 시험이 완료되어야 함.
(가) 제동시스템의 폐기-세이프 모드 동작개념을 적용하여 장치의 고장 발생 시 백업 기능 정상작동
(나) 보조제동 지연 계통의 제동장치에 대한 정상작동
라) 기계제동 및 전기제동을 구분하여 실시할 수 있어야 한다. 전기제동에서 가선은 열차운행에 필요한 충분한 전원을 공급할 수 있고, 전기제동 시에 회생전력을 가선에서 수용이 가능하여야 한다.
마) 시험 횟수는 동일 속도에서 최소 2회 이상 실시하는 것을 원칙으로 하며, 필요 시 또는 발주자의 요구 시에 따라 다르게 적용할 수 있다.
바) 시험차량은 영업운영 열차편성으로 구성한다.
사) 하중조건은 공차(과제동 및 활주발생) 및 만차조건(최대제동)에서 실시한다.
아) 기후조건은 건조 및 습윤 상태로 실시하되 여건이 어려울 경우는 모래로 습윤 조건을 제공하여 모의시험으로 실시한다.(습기조건Wet Rail)은 젖은 상태를 위하여 Ethylene Glycogen과 물의 혼합액을 사용할 수 있다. 습기조건시험은 첫 번째 활셋의 바로 앞 두 주행범에 각각 15L/시간의 혼합액을 뿌리면서 시험을 수행한다.)
나. 분석 조건
가) 본 시험은 KS C IEC 61133, EN 13452-1, EN 13452-2 등에 의거하여 편성된 열차를 각기 다른 선로 접착조건에 제동성을 측정하는데 있다. 시험 중에는 활주 방지시스템을 가동시켜 정확한 점지거리와 기능의 동작 여부를 확인한다.
나) 시험결과 보고서에는 중량과 차륜의 지름, 슬립방지 프로그램(설치되는 경우에 한함)의 색인과 버전 정보가 표시되어야 한다.
다) 정확한 검증을 위하여 다음 사항도 기재되어야 한다.
동력차 번호, 동력 대차의 제동 슈(Brake Shoe) 또는 제동패드(Brake Pad) 및 부수차 제어차(포함) 대차의 제동 패드(Brake Pad)의 종류
라) 시험은 새로운 제동 슈(Brake Shoe)나 제동 패드(Brake Pad)를 가지고 시행되어야 한다. 시험 후에는 제동 디스크, 패드, 슈의 상태와 차륜의 놓림 정도를 검사하여야 한다.
마) 제어장치의 제동력 분배에 따라 기계제동, 저항제동(설치되는 경우에 한함), 회생제동을 조합하여 제동이 작동되게 한다.
바) 전기제동모드(회생, 저항)의 선정은 시험조건에 따라 선정한다.
사) 제동을 체결하기 전에 차량의 속도는 시험할 속도에 가능한 근접하도록 한다. 제동체결 시의 열차 속도(V km/h)는 일정하여야 하며, 시험하고자 하는 속도 V0에 대하여 ±3 km/h (KS C IEC 61133) 이하이어야 한다. 제동의 체결 신호에 따라 시험에 필요한 제동이 작동되도록 한다.
아) 측정된 제동거리는 미터(meter)로 표시하며, 매 시험마다 기록되어야 한다.
자) 제동 작동시 시간에 따른 속도변화 곡선이 기록되어야 한다.
차) 시험시 제동압력의 총기와 완해가 정상적으로 작동하는지 확인한다.
카) 순수 기계제동시험은 시험속도에 도달한 후 회생제동을 차단하고 순수 기계제동만을 체결하여 시험한다.
타) 제동거리 측정이 실제적으로 평탄선이 아닌 경우, 직선구간의 구배변화가 ±4 mm/m (KS C IEC 61133) 이하 이어야 한다. 다만, 평탄선의 조건을 충족하기 어려울 경우는 신청자(제작자)와 협의하여 시험하되 선로구배 조건에 따른 보정과 속도에 대한 제동거리 편차는 보정되어야 한다.
파) 활주 시험은 젖은 주행변 조건의 비상제동시험 과정에서 함께 수행하며, 차축 속도를 측정하여 차륜활주가 발생하는 경우 활주방지장치의 작동 및 재점착이 이루어 질을 확인한다. 다만, 활주방지장치 또는 활주방지기능이 설치되는 경우에 한정하여 실시한다.
(2) 시험의 분류(해당 철도차량의 제동장치 설계에 관련된 항목에 한다)
가. 제동성능시험
가) 상용제동시험(기계제동, 혼합제동)
나) 비상제동시험(마스콘, 비상스위치, 기계제동)
다) 전체제동시스템 3/4제동시험(비상제동, 상용제동)
나. 제동력 블렌딩 동작시험
다. 활주방지장치시험(차륜활주보정)
라. 차상신호장치에 의한 비상제동시험
마. 고장열차 구원운전시험
(3) 시험방법
가. 제동성능시험
가) 상용제동시험
 (가) 제동거리 측정시험
 (나) 감속도 측정시험(기계제동+전기제동)
 (다) 감속도 측정시험(기계제동)
 (라) 공주간 측정시험
 (마) 저크 한계 측정
나) 비상제동시험
 (가) 비상제동거리 측정시험
 (나) 감속도 측정시험
 (다) 공주간 측정시험
 (라) 제동온도측정시험
 (마) 제동실린더압력 측정시험
 (바) 회생제동력 측정시험
 (사) 차상신호장치에 의한 비상제동시험
열차 허용최고속도 이상으로 가속시 차상신호감지에 의한 비상제동거리 측정한다.
 (아) 순수기계제동시험
다) 전체제동시스템 3/4 제동시험
 전체 제동시스템의 3/4만으로 제동을 체결한다.
나. 제동블렌딩 동작시험
상용제동 조건에서 제동블렌딩장치의 동작 전, 후의 제동거리에 변화가 없음을 확인한다.
다. 활주방지장치시험(해당하는 경우에 한한다)
가) 선로조건은 점검 주행범에서 실시하며 중량조건은 공차중량 조건으로 실시한다.
나) 열차속도를 최고속도 또는 임의속도로 유지한다.
다) 제동체결전에 살수장치의 코크를 열어 살수한다.
라) 비상제동을 체결하고 정지시까지 유지한다.
마) 차축 속도 및 제동실험력 압력을 측정하여 활주 발생 시 활주방지장치의 작동 및
재점착 여부가 패턴그래프와 일치하는지 확인한다.
라. 고장열차 구원운전시험
구원 및 피구원 운전시 공기, 전기 등을 연결하고, 주행중 제동시험을 구원 및 피구원
차량의 제동이 정상적으로 제어되는지 확인한다.
가) 신규 차량으로 기존 차량 구원 연결 시 (동일형식)
나) 기존차량으로 신규차량을 구원 연결 시 (동일형식)

7) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 날씨
(2) 열차번호 및 열차편성 차호
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 사용한 필터특성
(5) 측정항목별 결과
(6) 기타 특이사항

5.4.3 최고속도시험
1) 적용범위
해당 철도차량의 최고속도성능에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우
에 적용된다.
2) 시험 목적
최고속도시험을 실시하여 규정에 만족하는지를 확인하고, 기기 및 제어장치가 원활히 작동하는지
확인하기 위해 실시한다.
3) 시험 방법 및 판정기준
(1) 시험조건
가) 차량은 만차 하중조건으로 실시한다.
나. 시험구간은 역간거리가 비교적 길고 최고속 도 주행이 용이한 평탄선로 구간을 선정하
며 구배나 곡선이 있을 경우 그에 따른 보정치를 사용한다.
다. 가선은 열차운행에 필요한 전원을 공급할 수 있어야 한다.
라. 시험차량은 운영편성으로 구성한다.
(2) 측정항목
가. 가선으로부터 집전되는 전압 및 전류
나. 추진제어용 전력변환장치로 입력되는 전압 및 전류
다. 건인전동기로 입력되는 전압 및 전류의 순시치 및 실효치
라. 건인력 지령치
마. 추진제어용 전력변환장치로 입력되는 역행 지령치
바. 추진제어용 전력변환장치의 건인력 제어를 위한 지령치 및 달성치
사. 제어차 및 동력차의 제동압력
아. 차량의 주행가속도
자. 차량의 주행속도
(3) 시험방법 및 평가기준
가. 차량을 최대전원으로 최고속도까지 가속시키며 3)-(2)의 측정항목을 기록한다.
나. 차량의 최고속도 도달을 확인하고 감속시킨다.
다. 최고속도 주행 중 각 기기의 동작 및 상태가 정상적이어야 하며 최고속도가 규정된 값 이상이어야 한다.
4) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정구간
 (4) 시험기의 종류·형식·설치위치 및 구성도
 (5) 사용한 필터특성
 (6) 측정항목별 결과
 (7) 기타 특이사항

5.4.4 집전시험
1) 적용범위
 해당 철도차량에 적용되는 집전장치의 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
 용어의 정의는 국제표준을 따르는 KS C IEC 60494-2 및 IEC 62499를 따르며 주요용어는 다음과 같다.
 (1) 집전장치 : 1개 이상의 전차선에서 집전하는 장치로서, 하부 프레임, 동작 시스템, 집전헤드 등으로 구성된다. 형상은 판토그래프방식, 제3궤조방식 등 다양하고, "동작" 위치에서 이 장치는 전체적 또는 부분적으로 전압을 받는다. 전차선에서 차량 전기 시스템으로 전류가 전달되도록 해 준다.
 (2) 프레임 : 집전장치 하부 프레임에 대해 수직 방향으로 집전헤드를 움직일 수 있도록 해주는 관절형 구조체
 (3) 판토그래프 집전헤드 : 프레임에 의해 지지되는 집전장치 부분으로서 집전판, 혼(horn)
등을 포함하며 현장장치도 포함한다.
(4) 집전판 : 집전헤드의 교체 가능한 마모 부분으로 전차선과 접촉한다.
(5) 절연판 : 제3궤조 집전장치의 관절 랜크와 스프링으로 구성되어 집전장치와 전차선 사이의 접촉을 유지
(6) 동작 시스템 : 2면 절연판 사이에서 접촉력을 전달하고 전차선의 각도 변화에 따라 집전판의 고른 접촉을 유지
(7) 제3궤조 집전장치 : 동작 시스템과 집전판 사이에서 접촉력을 전달하고 전차선의 각도 변화에 따라 집전판의 고른 접촉을 유지

3) 참고규격
다음의 규격은 이 시험방법에 인용됨으로써 이 시험방법의 일부를 구성한다. 이러한 인용규격 중 발행연도가 표기되어 있는 규격은 해당 연도의 발행판만이 이 시험방법을 구성하는 것으로 하고, 그 이후의 개정판이나 추가판은 적용하지 않는다. 발행연도를 표기하지 않은 규격은 그 최신판을 적용한다.
(1) KS C IEC 60494-2:철도용 전기 설비 - 집전장치의 특성 및 시험 제2부 : 도시철도 차량용 집전장치
(2) IEC 62486:Railway applications - Current collection systems - Technical criteria for the interaction between pantograph and overhead line (to achieve free access)
(3) EN 50317:Railway applications. Current collection systems. Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line
(4) EN 50318:Railway applications. Current collection systems. Validation of simulation of the dynamic interaction between pantograph and overhead contact line
(5) KS C IEC 60913:철도용 전기 설비-전기 견인용 가공 급전선로

4) 시험 방법
(1) 차량 조건
가. 차량편성은 실제 운행편성으로 한다.
나. 측정은 차량에 장착된 장치별로 실시한다.
다. 시험하중은만차상태(다만, 측정장치 및 측정기자재 포함)로 한다.
라. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.
(2) 시험항목
측정항목은 다음 표와 같다.

<table>
<thead>
<tr>
<th>순번</th>
<th>시험항목</th>
<th>구분</th>
<th>형식승인</th>
<th>완성검사</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>동작시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>기밀시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>집전헤드추중성시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>접은상태유지력시험</td>
<td>○</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>압상력시험</td>
<td>○</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>상승시간시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>집전장치편향시험</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>전류접전시험 (접촉력 측정)</td>
<td>○</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

(3) 시험 장비
가. 관련시험 전용/범용 장비
나. 전류접선 시험에 사용되는 시험 장비는 EN 50317에 의한 정확도를 보증할 것
(4) 시험방법
가. 측정항목의 1~7번 항목은 완성차 시험의 집전시험과 동일하게 시행한다. 단, 시운전 시험의 마지막 부분에서 시행한다.
나. 전류접선시험
가) 시험조건
(가) 시험 준비를 위한 지붕 위 계측장비의 점검이 필요한 경우, 반드시 가선 전원을 차단하고 가선을 접지 조치한 후에 점검 작업을 시행한다.
(나) 정상운행 조건으로 하여 최대 속도로 운전한다.
(다) 집전시험은 고전압 환경에서 수행되므로 안전책임자에 의해 안전 수칙의 준수 상태를 확인받은 후 시험을 시행한다.
나) 시험방법
(가) IEC 62486 또는 EN 50317에 따라 접촉력을 측정한다.
(나) 접촉력은 공력 및 계측기에 의한 영향을 고려하여야 하며 보상방법을 제시토록 한다.
(다) 최대운행속도에서 최소 10km이상의 구간 데이터를 이용하여 아크측정 시는 만차조건에서의 정격전력의 30%이상으로 견인시에 측정한다.
(라) 이론상 측정은 측정된 평균 접촉력(Fmean)에서 3배 표준편차(σ)를 뺀 값, 즉 Fmean-3σ 값을 평가하는 접촉력 평가법과, “아크(Arc) 지속시간 누적 합/전체 주행시간” 으로 평가하는 “아크 평가법” 2가지 중 선택적 적용이 가능하다. 접촉력 평가법을 적용하는 것을 우선하나 시험환경 등을 고려하여 아크 평가법을 사용할 수 있다.
(마) 최대접촉력 측정은 측정된 평균 접촉력(Fmean)에서 3배 표준편차를 더한 값, 즉 Fmean+3σ 값을 평가하는 접촉력 평가법으로 계산된다.
(바) 주습판 온도를 정차 시 30분 이상 및 주행시 측정하여 기록한다.
(사) 상/하행선 동일하게 측정하며 분석거리를 최소 10km 이상으로 한다.
(아) 개발지 및 터널을 구분하여 측정기록하며 판정은 개발지 시험결과로만 판정한다.
(자) 제3계조 접전장치는 상기 (가)호 내지 (아)호에서 해당되는 항목에 한하여 적용한다.
5) 결과의 분석
(1) 각 시험 특성에 따라 결과를 기록지에 작성한다.
(2) 시험결과가 직접적으로 판정에 사용하지 않는 경우 분석과정과 분석결과를 작성한다.
6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 측정구간 및 특성(개발지, 터널 표시)
(4) 주행속도
(5) 측정자
(6) 시험기의 종류-형식-설치위치 및 구성도
(7) 측정항목별 결과
(8) 계산 근거 및 계산결과
(9) 기타 특이사항

5.4.5 유도장시험
1) 적용범위
 해당 철도차량의 유도장에 대해 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 참고규격
 (1) IEC/TS 62597 : 인체의 노출되는 철도 환경의 전기, 전자 장치에서 방사되는 자기장의 측정 절차
 (2) KS C IEC 62236-1, IEC 62236-1:철도용 전기자기적합성 - 제1부 : 일반사항
 (3) KS C IEC 62236-2, IEC 62236-2:철도용 전기자기적합성 - 제2부 : 전체 철도 시스템에서 외부로 나가는 방출
 (4) KS C IEC 62236-3-1, IEC 62236-3-1:철도용 전기자기적합성 - 제3-1부 : 철도차량 - 열차 및 공차
3) 시험 방법 및 기준

<table>
<thead>
<tr>
<th>시험방법</th>
<th>참고규격 및 기준</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>복사성 간섭 시험</td>
<td>정차</td>
<td>추진 장치 대기 상태 보조전원장치 및 서비스기동작</td>
</tr>
<tr>
<td></td>
<td>저속 운행</td>
<td>최대전인력의 1/3 속도역행</td>
</tr>
<tr>
<td></td>
<td>고속 운행</td>
<td>최고속도의 90% 초과 역행</td>
</tr>
<tr>
<td></td>
<td></td>
<td>최대 전기제동력으로 전기제동</td>
</tr>
<tr>
<td>전도성 간섭 시험</td>
<td>고속 운행</td>
<td>최고 속도 역행 -> 최대 전기제동력 제동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 추진제어장치 정상 상태 및 1개 비동작 상태 측정</td>
</tr>
<tr>
<td>유도성 간섭 시험</td>
<td>고속 운행</td>
<td>최고속도 역행 -> 최대 전기제동력 제동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 추진제어장치 정상 상태 측정</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 9 ~ 150kHz 주파수 대역에서 기준치를 초과하는 방사 주파수가 있는 경우 KS C IEC 62236-3-1 및 KN 50에 따라 현재 사용중인 무선통신 서비스 대역과의 간섭여부를 확인하여 결과를 판정한다.
(2) 인체의 유해성 시험기준은 전파법제47조의2(전자파 인체보호기준 등)제1항에 의한 “전자파인체보호기준”(과학기술정보통신부고시) 제3조1항에 따르며 측정방법은 IEC 62597에 의한다.

<table>
<thead>
<tr>
<th>주파수 범위</th>
<th>자속밀도 (μT)</th>
<th>주파수 범위</th>
<th>자속밀도 (μT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1㎐ 이하</td>
<td>4×10⁴</td>
<td>1㎐ 이상 ~ 8㎐ 미만</td>
<td>4×10⁴/f²</td>
</tr>
<tr>
<td>8㎐ 이상 ~ 25㎐ 미만</td>
<td>5,000/f</td>
<td>0.025㎒ 이상 ~ 0.8㎑ 미만</td>
<td>5/f</td>
</tr>
<tr>
<td>0.8㎑ 이상 ~ 20㎑ 미만</td>
<td>6.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정구간
 (4) 주행속도
 (5) 주행거리
 (6) 측정구간의 곡선반지름, 기울기, 구조 등
 (7) 시험기의 종류·형식·설치위치 및 구성도
 (8) 사용한 필터특성
 (9) 측정항목별 결과
 (10) 기타 특이사항

5.4.6 보호장치동작확인시험
1) 적용범위
 해당 철도차량의 이상상태 발생 시 차량 및 기기의 보호장치에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 참고규격
 (1) KS C IEC 61133: 전기 건전 및 안전 건전 척도 차량의 사용 전 완성차 시험 방법
 (2) KS C IEC 60850:철도용 건전 시스템의 공급 전압
 (3) IEC 62313: Railway Applications. Power supply and rolling stock. Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability
 (4) KS C IEC 60571:철도 차량용 전자 기기의 개별 요구 사항
 (5) KS C IEC 61287-1:철도용 전기 설비-철도용 전력 변환 장치-제1부:특성 및 시험 방법
 (6) KS C IEC 61287-2:철도 차량 차상에 설치된 전력 컨버터 - 제2부 : 추가 기술 정보

3) 시험 항목
 (1) 과부하시험
 역행 시 과부하조건이 발생하였을 경우 정상적인 검출과 이에 따른 보호장치의 안전성 확인을 목적으로 실시한다.
 (2) 순간정전시험
역행과 회생 제동 등의 조건에서 전차선이 정전되었을 경우, 차량 및 구성품의 보호를 위한 보호동작의 안전성 확인을 목적으로 실시한다.

(3) 전압변동시험
차량의 운행 중 전차선 전압이 급변하였을 경우 차량 기능의 안정성 확인을 목적으로 실시 한다.

4) 시험 방법 및 판정기준
(1) 과부하시험
가. 시험조건
가) 차량의 진행을 구속한 상태에서 기동시키거나 관련 검출회로에 등가의 신호를 입력 시키며 시험한다.
나) 차량의 하중은 만차조건으로 한다.
다. 측정항목
가) 가선으로부터 집전되는 전압 및 전류
나) 추진제어용 전력변환장치로 입력되는 전압 및 전류
다) 견인전동기로 입력되는 전압 및 전류의 순시치 및 실효치
라) 견인력 지령치
마) 추진제어용 전력변환장치로 입력되는 역행 지령치
바) 추진제어용 전력변환장치의 견인력 제어를 위한 지령치 및 달성치
사) 제어차 및 동력차의 제동압력
아) 차량의 주행가속도
자) 차량의 주행속도

나. 시험방법
가) 최대견인력으로 가속작동을 하고 4)-(1)-나의 각 항목을 기록한다.
나) 가속작동 시 보호동작을 확인하여 이상이 없어야 한다.

(2) 순간정전시험
가. 시험조건
가) 10 ms에서 10 s사이의 시간범위를 완전히 포함할 수 있도록 수차례 실시하여야 한다.
나) 차량에 설치된 모든 기기를 정상 동작상태로 한다.
다) 차량의 하중은 만차조건으로 한다.

나. 측정항목
측정항목은 4)-(1)-나, 의 항목과 동일하다.

다. 시험방법
가) 차량을 최대견인력으로 출발시키며 차량에 유입되는 전차선 전류가 최대인 속도에서 전차선을 정전시킨다.
나) 차량의 최고속도까지 가속한 후 전기제동을 동작시간 상태에서 제동을 체결하여 전기제동에너지가 최대인 속도에서 전차선을 정전시킨다.
다) 시험 중 4)-(1)-나, 의 각 항목을 기록하여 정전 시 보호동작 및 재인가 시 정전시간 이외에 동작이 동작이 아닌지 확인하여야 한다.

(3) 전압변동시험
가. 시험조건
가) 역행 시 정격전압의 +10 %, 회생제동 시 정격전압의 -10 %로 급변한다.
나) 차량에 설치된 모든 기기를 정상 동작상태로 한다.
다) 차량의 하중은 만차 조건으로 한다.
나. 측정항목
측정항목은 4)-(1)-나.의 항목과 동일하다.
다. 시험방법
가) 차량을 최대인력으로 출발시키며 에너지가 최대인 영역의 최고속도에서 전압을 변동시킨다.
나) 차량을 최고속도까지 가속한 후 전기제동을 동작시킨 상태에서 에너지가 최대인 영역의 최고속도에서 전압을 변동시킨다.
다) 시험 중 4)-(1)-나.의 각 항목을 기록하여 전압값에 이상이 없음을 확인 한다.

5.4.7 소음시험
1) 적용범위
해당 철도차량에서 발생되는 소음특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
(1) 음압레벨(Sound pressure level) : 실효치 음압의 제곱을 기준 음압의 제곱으로 나눈 값의 상용로그의 10배이며, 다음 식으로 주어진다. 단위는 데시벨(dB)로 나타낸다. 다만, 식 (1)은 참고규격인 EN ISO 3095를 참조하였다.

\[L_p = 10 \log \left(\frac{P}{P_0} \right)^2 \] \hspace{1cm} (1)

여기서 \(P \) : 실효치 음압(Pa)
\(P_0 \) : 기준음압(20 \(\mu \)Pa)

(2) 소음레벨(A-weighted sound pressure level) : \(A \)가중 음압레벨이라고 하며 \(A \) 주파수 가중 (KS C 1502 또는 KS C 1505 참고)을 사용하여 측정된 실효치 음압의 제곱을 기준 음압의 제곱으로 나눈 값의 상용로그의 10배이며, 다음 식으로 주어진다. 다만, 식 (2)는 참고규격인 EN ISO 3095를 참조하였다.

\[L_{pA} = 10 \log \left(\frac{P_A}{P_0} \right)^2 \] \hspace{1cm} (2)

여기서 \(P_A \) : 대상으로 하는 \(A \)가중 음압(Pa)
\(P_0 \) : 기준음압(20 \(\mu \)Pa)

(3) 등가소음레벨(Equivalent continuous A-weighted sound pressure level) : 등가 \(A \)가중 음압레벨이라고 하며 어떤 시간 범위 \(T \)에 대하여 시간에 따라 변동하는 음의 \(A \)가중 음압레벨을 에너지적인 평균값으로 나타낸 압 루에 다음 식으로 주어진다. 식 (3)은 참고규격인 환경부고시(제2016-114호) 별표 4를 참조하였다.
여기서 \(L_{Aeq,T} \)는时刻 \(t_1 \)에서 \(t_2 \)까지의 시간 \(T(s) \) 동안의 등가 A가중 음압레벨(\(dB \))
\(P_a(t) \)는 대상으로 하는 음의 순시 A가중 음압(\(Pa \))
\(P_0 \)는 기준음압(20 \(\mu Pa \))

(4) 배경소음(Background sound pressure level) : 한 장소에 있어서 측정하고자 하는 대상소음이 없을 때 그 장소의 소음을 대상소음에 대한 배경소음이라 한다.
(5) 직선평탄로 : 얼지 않은 마른상태의 정상적인 선로로써, 구배는 3:1000 이하여야하며, 곡선반경은 5,000 m 이상을 직선평탄로라 한다.

3) 참고규격
(1) EN ISO 3095:Acoustics-Railway applications-Measurement of noise emitted by railbound vehicles
(2) KS I ISO 1996-1:음향 - 환경소음의 표현 측정 및 평가방법 - 제1부 : 기본량 및 평가절차
(3) 환경부고시 : 철도차량의 소음권고기준 및 검사방법 등에 관한 규정
(4) 환경부고시 : 소음·진동 공정시험기준 ES 03304.2b 철도소음관리기준 측정방법
(6) KS R 9143:철도차량 차내소음 시험방법
(7) EN 15461 : Railway applications. Noise emission. Characterization of the dynamic properties of track selections for pass by noise measurements
(8) EN 15610:Railway applications. Noise emission. Rail roughness measurement related to rolling noise generation

4) 시험방법
(1) 차량 및 시험조건
가. 시험차량편성은 실제 운행편성으로 한다.
나. 측정은 차종(동력차, 부수차 등)별로 실시한다.
다. 시험하중은 공차상태(다만, 측정자 및 측정기기재 포함)로 한다. 단, 시험조건이 불가피한 경우 공차상태의 10% 초과 중량을 허용하여 시험할 수 있다.
라. 각 시험은 차량의 모든 보조장치 및 주변장치(냉난방기기장치 가동 포함)를 가동하고 실시한다. 단, 배경소음측정 시는 제외한다.
마. 차량은 운전규정에 따라 충분히 정비되어 있어야 하며, 모든 출입문, 창문 및 차량간의 통행문은 닫혀있어야 한다.
바. 주행범의 조도(rail roughness level)상태는 발주자의 요구사항을 만족해야한다.
사. 건물 및 장애물 등으로 인한 반사소음으로 측정에 영향을 주지 않는 지점을 선정한다.
아. 풍속이 5m/s를 초과하거나 우천 시에는 측정하여서는 안 된다.

(2) 측정구간
측정구간은 시험대상 열차의 운행구간을 선정하는 것을 원칙으로 하며, 시험에 적합한 구간은 신청자(제작자)와 협의하여 선정할 수 있다. 단, 차량발주자 또는 운영자 협의는 관련법규 및 발주사항에 근거하여 협의가 진행되어야 한다.
철도차량기술기준 KRTS-VE-Part54-2018(R1) 도시철도차량(모노레일경전철)

(3) 운행속도
설계최고속도±5km/h(측정시간 동안의 평균속도는 설계최고속도 이상) 또는 운행선로에서의 운행최고속도±5km/h(측정시간 동안의 평균속도는 설계최고속도 이상)로 주행하여 측정한다. 단, 환경소음시험의 경우는 해당 운영선로에서의 정상운행속도에서 측정한다.

(4) 측정항목 및 측정위치
측정항목별 측정위치는 표 1과 같다.

표 1. 측정항목 및 측정위치

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>측정 위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>정차소음시험</td>
<td>각 측정대상 차종의 전위대차 중앙부 상면, 차량 정중앙부, 차량 후위대차 상면</td>
</tr>
<tr>
<td>문원실소음시험</td>
<td>기관사가 운전실 착석 시 기관사 귀높이의 엘보방향으로 약 0.2m 이격된 지점</td>
</tr>
<tr>
<td>실외소음시험</td>
<td>4)-(6)-(나)-(다)의 내용 및 3)-(1)참고</td>
</tr>
<tr>
<td>주행소음시험</td>
<td>정차소음시험 중 실내소음시험과 동일지점</td>
</tr>
<tr>
<td>문원실소음시험</td>
<td>정차소음시험 중 문원실소음시험과 동일지점</td>
</tr>
<tr>
<td>실외소음시험</td>
<td>4)-(6)-(다)-(다)의 내용 및 3)-(1)참고</td>
</tr>
<tr>
<td>환경소음시험</td>
<td>- 시험대상차량의 실제운행선로에서 발생되는 철도소음을 대표할 수 있는 장소나 철도소음으로 인하여 문제를 일으킬 우려가 있는 장소1)로써 3개소 이상 위치 및 측정.</td>
</tr>
<tr>
<td>1)</td>
<td>철도소음을 대표할 수 있는 장소는 해당 선로구간의 환경영향평가를 통해 소음으로 인해 환경적으로 문제가 될 수 있는 지점 또는 소음으로 인한 민원발생지역을 위주로 선정</td>
</tr>
</tbody>
</table>

(5) 측정장비
측정장비는 KS C IEC 61672-1에 정한 클래스 2의 소음계 또는 동등 이상의 성능을 가진 것 이어야 한다. 그 외에 다음사항을 고려한다.
가. 교정기(Calibrator, Pistonphone)는 주기적으로 검정된 기관으로부터 교정이 이루어져야 한다.
나. 소음계 또는 마이크로폰은 협의한 상황을 제외하고 고정대(삼각대, 높이 또는 길이조절이 가능하며 고정할 수 있는 장치 등)에 고정하여 측정하는 것을 원칙으로 한다.
다. 측정하는 소음데이터는 로깅(Logging)되어야 하며, 재분석이 가능해야 한다.

(6) 측정방법
가. 공통사항
가) 마이크로폰은 각 측정항목 별 측정시작 전 교정기 발음음의 오차 ±1dB 이내로 매회 교정을 실시한다.
나) 풍속이 2m/s이상일 때에는 반드시 마이크로폰에 방풍망을 부착하여야 하며, 풍속이 5m/s를 초과할 때에는 측정하여야 한다.
다) 배경소음 측정은 각 시험항목별 측정 전 동일지점에서 3분 이상 3회 측정한다.
라) 모든 측정지점은 평면도로써 정확히 명기되어야 하며, 측정시점이 첨부되어야 한다.

나. 정차소음시험
가) 실내소음시험
 (가) 마이크로폰의 위치는 차량바닥면으로부터 1.6m 높이에서 위로 향한 수직방향으로 고정되어야 한다.
 (나) 차량은 반사음의 영향이 없는 직선평탄로에 정차된 상태에서 측정한다.
 (다) 측정시간은 10초, 15초, 20초 중 하나를 선정하여 소음레벨을 측정한다.
 (리) 측정횟수는 측정지점별 각 3회 이상 측정한다.

나) 운전실소음시험
실내소음시험과 동일한 방법으로 측정한다.

다) 실외소음시험
 (가) 마이크로폰의 위치는 선로중심으로부터 7.5m 거리, 주행범으로부터 1.2m 높이에서 열차방향으로 고정한다.
 (나) 측정지점 수는 참고규격인 EN ISO 3095를 참고할 수 있다.
 (다) 차량은 반사음의 영향이 없는 직선평탄로에 정차된 상태에서 측정한다.
 (라) 측정시간은 60초 이상, 각 지점별 3회 이상 측정한다. 단, 측정한 두 값의 분포가 3dB(A)를 초과하지 않아야 한다.

다. 주행소음시험
가) 실내소음시험
 (가) 마이크로폰의 위치는 차량바닥면으로부터 1.6m 높이에서 위로 향한 수직방향으로 고정되어야 한다.
 (나) 차량은 직선평탄 개활지 및 터널구간을 최고속도±5km/h(측정시간 동안의 평균속도는 최고속도 이상) 주행상태에서 측정한다. 다만 내연기관 사용 등으로 인해 가감음 시 소음이 최소음이 될 가능성이 있는 차량은 KS R 9143 규정 내 가속 감속 주행 시험에 따라 측정한다.
 (다) 측정시간은 개활지 및 터널구간 각 10초, 15초, 20초 중 하나를 선정하여 소음레벨을 측정한다.
 (라) 측정횟수는 측정지점별 각 3회 이상 측정한다.

나) 운전실소음시험
실내소음시험과 동일한 방법으로 측정한다.

다) 실외소음시험
 (가) 열차운행 최고속도로 주행하여 측정하며, 마이크로폰의 일반위치는 선로중심으로부터 7.5m 거리, 주행범으로부터 1.2m 높이에서 선로방향으로 고정되어야 한다. 단, 열차의 주요 소음원이 열차 상부에 존재할 경우 마이크로폰의 일반위치와 동일거리, 주행범으로부터 3.5m 높이에서 추가측정을 하여야 한다. 자세한 사항은 참고규격인 EN ISO 3095를 참고할 수 있다.
 (나) 차량의 전면부를 중심으로 좌우의 특성을 타입이 다른 경우는 왼쪽과 같은 위치에서 좌 우 대칭으로 마이크로폰을 설치하여 측정한다.
 (다) 차량은 직선평탄 개활지 주행상태에서 측정한다.
 (라) 측정시간은 환경부고시에서 지정한 전체 철도차량에 대한 측정시간(T) 동안 측정해야 한다.
 ※ T시간은 전체 철도차량에 대한 측정 시간을 말하며, 자세한 사항은 환경부고시에 따릅니다.
별표 4를 참고할 수 있다.
(마) 측정횟수는 각 측정지점별 3회 이상 측정한다.

라. 환경소음시험
가) 마이크로폰의 위치는 목표로 선정하는 것을 원칙으로 하며, 지면 위 1.2 ~ 1.5m 높이에서 소음원 방향으로 고정한다.
나) 측정점에 장애물이나 주거, 학교, 병원, 상업 등에 활용되는 건물이 있을 때에는 건축물로부터 철도방향으로 1.0m 떨어진 지점의 지면 위 1.2~1.5m 높이로 한다.
다) 철도소음을 대표하는 장소가 2층 이상의 건물인 경우에는 소음이 더 높은 지점에서 선로방향으로 마이크로폰을 설치하며, 지면 위 1.2~1.5m 높이에서 소음원방향으로 정한다.
라) 환경부고시 소음진동정지시험기준 내 철도소음 측정방법에서 정한 2시간 간격을 두고 1시간씩 측정한다. 투고 1시간씩 측정, 이건 1회 측정하는 것을 원칙으로 한다. 단, 기존선에 제작자가 추가하는 경우 또는 제작자와의 협의에 따라 시험대상 차량 주행 시 발생되는 소음을 열차전체통과시간(T)간 동안을 각 3회 이상 측정한다. 다만, 기존 운행선으로 검사대상 차량이 추가 운영되는 경우 또는 제작자와의 협의에 따라 시험 대상선로를 주행하는 모든 열차차량 종류별 주행 시 발생되는 소음을 열차전체통과시간(T) 시간 동안을 각 3회 이상 측정한다.

5) 결과의 분석
(1) 주파수계층은 KS C IEC 61672-1의 5.4의 주파수 가중 A를 사용하며, 시간계층은 KS C IEC 61672-1의 5.7의 시간 가중 F(Fast)를 사용하여 분석한다.
(2) 측정결과의 분석은 각 측정시간대별 등가소음계층분석을 수행한다. 단, 출발 및 정착소음 측정결과와 환경소음측정결과는 측정시간 동안의 최고소음계층(LpAmax값)을 분석한다.
(3) 정차소음측정결과의 분석은 각 측정시간대별 등가소음계층분석을 수행하며, 실내소음시험 및 운전실소음시험의 경우는 각 측정지점 및 횟수별로 소수점 첫째자리에서 반올림한 정수로 기록하고 이를 산술평균한 값을 결과로 표시한다. 단, 실외소음시험의 경우는 각 측정지점의 등가소음계층을 다음 식 (4)에 의해 평균등가소음계층을 분석한 값을 1회 측정결과로 한 후 각 횟수별로 소수점 첫째자리에서 반올림한 정수로 기록하고 이를 산술평균한 값을 결과값으로 표시한다.

\[L_{PAeq} = 10 \log \left(\frac{1}{n} \sum_{i=1}^{n} 10^{0.1L_{PAeq,i}} \right) \]

여기서 \[L_{PAeq,i} \] : i번째 마이크로폰의 등가소음계층

(4) 주행소음측정결과의 분석은 각 측정시간대별 등가소음계층분석을 수행하며, 실내소음시험 및 운전실소음시험의 경우는 각 측정지점 및 횟수별로 소수점 첫째자리에서 반올림한 정수로 기록하고 이를 산술평균한 값을 결과값으로 표시한다. 실외소음시험의 경우는 철도 차량통과시간(Tp) 동안의 등가소음계층분석을 수행하여 표시한 후 소수점 첫째자리에서 반올림한 정수로 기록하고 이를 산술평균한 값을 결과값으로 표시한다.
※ Tp 시간은 시험 대상 철도차량의 통과시간을 말하며, 자세한 사항은 환경부고시(제 2016-114호) 별표 4를 참고할 수 있다.
(5) 환경소음측정결과의 분석은 1시간 동안의 등가소음계층분석을 수행한 경우, 소수점 첫째 자리에서 반올림한 정수로 기록하고, 주간 2회의 기록한 결과를 산술평균한 것은 주간시
험결과로 야간 테스트 테이블에 기록한 결과를 적용하여 상호의 식을 적응하여 각 차량의 1시간 동안 최고소음레벨을 산출한 후 에너지 합산하여 소수점 첫째 자리에서 반올림하여 기록한 값을 결과값으로 표시한다. 식 (5)~(10)은 계산식은 참고규격인 환경부고시(제2016-244호)의 ES 03304.2b를 참고할 수 있다.

가. 경부·호남선 등 복선구간

\[L_{p,eq} = L_{p,4,F,max} + 10 \log \left(\frac{2.4n}{T} \right) \]

나. 경부선 복복선구간(서울~구로)

\[L_{p,eq} = L_{p,4,F,max} + 10 \log \left(\frac{5n}{T} \right) \]

다. 중앙, 태백, 영동선 등 단선구간

\[L_{p,eq} = L_{p,4,F,max} + 10 \log \left(\frac{8n}{T} \right) \]

라. 전철

\[L_{p,eq} = L_{p,4,F,max} + 10 \log \left(\frac{6n}{T} \right) \]

마. 고속철도

\[L_{p,eq} = L_{p,4,F,max} + 10 \log \left(\frac{(1.5d+\ell)}{v} \right) - 30 \]

바. 가~마에 해당되지 않는 경우

\[L_{p,eq} = L_{p,4,F,max} + 10 \log_{10} n - 32.6 \]

여기서
\(L_{p,4,F,max} \) : 열차 개별 통과시의 파워(Power) 평균치
\(n \) : T시간 동안의 열차 통과대수(대)
\(d \) : 선로중앙으로부터의 거리(m)
\(l \) : 평균 열차 길이(m)
\(v \) : 열차통과속력(km/h)

6) 평가 기준

(2) 출발소음평가는 출발소음시험 결과값이 최고속도에서의 피크치를 넘지 않아야 한다.

7) 시험기록

기록양식에는 다음과 같은 사항을 기록한다.

(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 측정구간
5.4.8 진동시험

1) 적용범위

해당 철도차량에서 발생되는 진동특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의

(1) 좌우방향의 정상가속도: 차량이 곡선구간을 통과할 때, 원곡선 부분에서 정상적으로 발생하는 좌우방향 가속도의 차체바닥면에 평행하는 성분으로서 세부적인 사항은 KS R 9160에 따른다.

(2) 철도차량의 진동방향 및 좌표축은 KS R 9160에 따른다.

3) 참고규격

(1) EN 14363: Railway applications. Testing and Simulation for the acceptance of running characteristics of railway vehicles - Running Behaviour and stationary tests

(2) UIC 518 OR: Testing and approval of railway vehicles from the point of view of their dynamic behavior - Safety - Track fatigue - Ride quality

(3) KS C IEC 61373: 철도차량 설비의 충격 및 진동시험 방법

(4) KS R 9160 철도차량의 진동특성 - 측정방법

4) 시험의 종류 및 목적

(1) 상하좌우방향 진동시험

철도차량(모노레일경전철) 주행 시 차체의 진동수준을 평가하기 위함이다.

(2) 좌우방향 정상가속도 시험

철도차량(모노레일경전철)의 곡선선로 주행 시 차체의 진동수준을 평가하기 위함이다.

5) 시험방법

(1) 차량조건

가. 차량편성은 실제 운행편성으로 한다.

나. 진동시험의 측정차량은 차종별(등력차, 부수차)로 발생 진동이 최고로 예상되는 차량을 각각 1량씩 선정하며, 측정위치는 표 1과 같다. 다만, 여의치 없을 경우 협의에 따르는 것으로 한다.

다. 시험하중은 공차상태(다만, 측정자 및 측정기재 포함)로 한다.

라. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.

마. 차량주행속도는 최고속도로 한다. 다만, 여의치 없을 경우 협의에 따르는 것으로 한다.

(2) 측정구간

협의에 따라 선정하며, 통상적으로 정비되어 있고, 10km 이상 최고속도로 주행할 수 있는 직선 평탄로로 한다. 다만, 여의치 없을 경우 협의에 따르는 것으로 한다.
(3) 측정항목 및 측정위치
측정항목별의 측정위치는 표 1과 같다.

<table>
<thead>
<tr>
<th>측정항목</th>
<th>측정위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>상하방향진동의 진동가속도</td>
<td>전·후위 대차중심상의 차체 바닥</td>
</tr>
<tr>
<td>좌우방향진동의 진동가속도</td>
<td>전·후위 대차중심상의 차체 바닥</td>
</tr>
<tr>
<td>좌우방향의 정상가속도</td>
<td>전·후위 대차중심상의 차체 바닥</td>
</tr>
</tbody>
</table>

(4) 측정횟수
진동시험은 2회 이상 동일조건에서 반복 측정하는 것을 원칙으로 한다. 다만, 측정구간의 제한사항이 있는 경우에는 협의에 따라 1회 측정할 수 있다.

(5) 측정 장비
측정장비는 진동가속도계와 시험목적, 진동의 측정, 기록, 분석에 적합한 부속장비로 한다. 그 외에 다음사항을 고려한다.
가. 측정장비는 측정대상 진동수에 대하여 공진주파수가 충분히 떨어진 동특성의 것을 사용한다.
나. 측정장비는 국부적인 진동이 없는 장소에서 측정장비에 올바로 설치한다.
다. 측정장비는 수평면에 부착하고, 측정 중 진동에 의해 움직이지 않도록 고정한다.
라. 필터는 대상이 되는 진동의 측정에 영향을 주지 않는 범위에서 사용한다.
마. 진동가속도계의 주파수특성은 측정대상 진동수의 범위를 충분히 만족하는 것으로 한다.
바. 진동가속도계는 측정범위가 ±50m/s²(5.1g) 이내인 것으로 한다.

(6) 측정방법
가. 상하좌우방향 진동
 가) 선정된 선로를 최고속도로 주행하며, 주행속도와 상하 좌우방향 진동가속도를 저장한다.
 나) 차량의 주행속도는 EN 14363 또는 UIC 518을 참고하여 신청자(제작자)와 협의하여 추가할 수 있다.
나. 좌우방향 정상가속도
 가) 선정된 곡선선로를 협의된 속도로 주행시킨다.
 나) 주행속도와 좌우방향 진동가속도를 저장한다.

6) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정구간
 (4) 주행속도
 (5) 주행거리
 (6) 선로의 곡선반지름, 기울기, 구조 등
 (7) 측정인원수 및 측정기재의 무게
 (8) 시험기의 종류·형식·설치위치 및 구성도
(9) 사용한 필터특성
(10) 측정항목
(11) 기타 특이사항
7) 결과분석방법
(1) 상하좌우방향 진동
가. EN 14363에 따라 분석하는 것이 원칙이며, 측정된 따른 차체의 진동가속도에 대해 다음의 필터를 적용한다.

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>적용필터</th>
</tr>
</thead>
<tbody>
<tr>
<td>차체 좌우방향 진동</td>
<td>0.4~10Hz 밴드패스 필터</td>
</tr>
<tr>
<td>차체 상하방향 진동</td>
<td></td>
</tr>
</tbody>
</table>

나. 필터를 통과시킨 데이터를 전체 시험구간을 단위구간(EN 14363 참조)으로 구분하고, 각 구간에 대해 진동 실험값, $|h_1|$ (0.15%의 진동값의 절대치)와 h_2 (99.85%의 진동값)을 구한다. 전체 시험구간에 대해 각 방향에 대한 실험값과 최대값의 Estimated maximum value(X)를 다음 식으로부터 계산한다. 최대값의 Estimated maximum value(X)는 $|h_1|$ 과 h_2의 합한 데이터를 사용한다.

$$X = X_m + S \cdot k$$

여기서 X_m과 S는 Estimated maximum value 계산에 사용한 데이터의 산술평균과 표준편차를 의미한다.

(2) 좌우방향 정상가속도
가. EN 14363에 따라 분석하는 것이 원칙이며, 측정된 따른 차체의 진동가속도에 대해 다음의 필터를 적용한다.

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>적용필터</th>
</tr>
</thead>
<tbody>
<tr>
<td>좌우방향 정상가속도</td>
<td>20Hz 저주파스 필터</td>
</tr>
</tbody>
</table>

나. 필터를 통과시킨 데이터를 전체 시험구간을 단위구간(EN 14363 참고)으로 구분하고, 각 구간에 대해 $|h_0|$ (50%의 진동값의 절대치)를 구한다. 전체 시험구간에 대해 좌우방향 정상가속도의 Estimated maximum value(X)를 다음 식으로부터 계산한다.

$$X = X_m + S \cdot k$$

여기서 X_m과 S는 전체 시험구간에서의 산술평균과 표준편차를 의미한다.

5.4.9 승차감 시험
1) 적용범위
 해당 철도차량에서 발생되는 진동이 승객에 미치는 승차감에 대한 설계적합성 또는 확인식동성성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
철도차량의 진동방향 및 좌표축은 KS R 9160에 따른다.
3) 참고규격
 (1) UIC 513 R: Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles
 (2) ISO 2631-1: Mechanical vibration and shock. Evaluation of human exposure to whole-body vibration. General Requirements
 (3) ISO 2631-4: Mechanical vibration and shock. Evaluation of human exposure to whole-body vibration. Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guideway transport systems
 (4) KS R 9216 철도차량 승차감 측정 및 평가방법
 (5) KS R 9160 철도차량의 진동특성 - 측정방법
4) 시험의 종류 및 목적
 도시철도차량(모노레일경전철) 주행 시 차체바닥에서 진동가속도를 측정한 후, 승차감 지수를 판단함으로써 승객의 안락도를 평가하기 위함이다.
5) 시험방법
 (1) 차량조건
 가. 차량편성은 실제 운행편성으로 한다.
 나. 승차감시험의 측정차량은 차종별(동력차, 부수차)로 발생 진동이 최고로 예상되는 차량을 각각 1량씩 선정하며, 측정위치는 표 1과 같다. 다만, 여의치 않을 경우 협의에 따르는 것으로 한다.
 다. 시험하중은 공차상태(다만, 측정자 및 측정기자재 포함)로 한다.
 라. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.
 마. 차량주행속도는 최고운영속도로 한다. 다만, 여의치 없을 경우 협의에 따르는 것으로 한다.
 (2) 측정구간
 협의에 따라 선정하며, 통상적으로 정비되어 있고, 5분 이상 최고속도로 주행할 수 있는 직선 평탄로로 한다. 다만, 여의치 않을 경우 협의에 따르는 것으로 한다.
 (3) 측정항목 및 측정위치
 측정항목별의 측정위치는 표 1과 같다.

<table>
<thead>
<tr>
<th>측정항목</th>
<th>측정위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>상하방향진동의 진동가속도 및 진동수</td>
<td>전-후위 대차중심상의 차체 바닥</td>
</tr>
<tr>
<td>좌우방향진동의 진동가속도 및 진동수</td>
<td>전- 후위대차중앙상의 차체바닥</td>
</tr>
<tr>
<td>전후방향진동의 진동가속도 및 진동수</td>
<td>전-후위 대차중앙상의 차체바닥</td>
</tr>
</tbody>
</table>

(4) 측정횟수
 승차감시험은 측정구간을 왕복하면서 상하행 각 2회씩 측정한다.
(5) 측정 장비
 측정장비는 진동가속도계와 시험목적, 진동의 측정, 기록, 분석에 적합한 부속장비로 한
다. 그 외에 다음사항을 고려한다.
가. 측정장비는 측정대상 진동수에 대하여 공진주파수가 충분히 멀어진 동특성의 것을 사용한다.
나. 측정장비는 국부적인 진동이 없는 장소에서 측정방향에 울바르게 설치한다.
다. 측정장비는 수평면에 부착하고, 측정 중의 진동에 의해 움직이지 않도록 고정한다.
라. 필터는 대상이 되는 진동의 측정에 영향을 주지 않는 범위에서 사용한다.
마. 진동가속도계의 주파수특성은 측정범위를 충분히 만족하는 것으로 한다.
바. 진동가속도계는 측정범위가 ±50m/s²(5.1g) 이내인 것으로 한다.
(6) 측정방법
가. 선정된 선로를 최고속도로 주행한다.
나. 주행속도와 상하좌우전후방향 진동가속도를 저장한다.
6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 측정구간
(4) 주행속도
(5) 주행거리
(6) 선로의 곡선반지름, 기울기, 구조 등
(7) 측정인원수 및 측정기재의 무게
(8) 시험기의 종류-형식-설치위치 및 구성도
(9) 사용한 필터특성
(10) 측정항목
(11) 기타 특이사항
7) 결과분석방법
(1) 각 측정항목별로 측정한 진동가속도 신호에 대해 각 주파수별로 참고규격에 규정한 가중필터(weighting filter)를 통과시킨다.
(2) 필터를 통과한 신호에 대해 매 5초마다의 실효값(RMS)을 5분간 60개를 구한다.
(3) 60개의 데이터에 대해 진동가속도 크기를 가로축으로, 동일한 진동가속도 크기의 누적빈도를 세로축으로 한 누적빈도분포 그래프를 그린다.
(4) 누적빈도분포에서 95%에 해당하는 각각의 \(a_{X_{95}}\), \(a_{Y_{95}}\), \(a_{Z_{95}}\) 를 구한다. 여기서, 단위는 m/s²이다.

\[a_{X_{95}} : \text{전후방향 진동의 누적빈도분포의 95%에 해당하는 진동가속도} \]
\[a_{Y_{95}} : \text{좌우방향 진동의 누적빈도분포의 95%에 해당하는 진동가속도} \]
\[a_{Z_{95}} : \text{상하방향 진동의 누적빈도분포의 95%에 해당하는 진동가속도} \]

(5) 다음 식에 의하여 승차감 지수 \(N\)을 구한다.

\[N = 6 \sqrt{(a_{X_{95}})^2 + (a_{Y_{95}})^2 + (a_{Z_{95}})^2} \]
(6) 매회 측정한 승차감 지수 \(N \)을 산술평균한다.

5.4.10 주행저항시험

1) 적용범위

해당 철도차량의 주행저항에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.

2) 용어정의

주행저항: 평탄 직선로 상에서의 공기저항, 차륜의 구름저항, 회전부위의 마찰 등이 주된 원인으로 이들의 합성을 주행저항이라 하며, 주로 다음 식으로 표현한다.

\[
R = a + bV + cV^2
\]

여기서
\(a \) : 기계저항
\(bV \) : 속도에 비례하는 저항
\(cV^2 \) : 속도 제곱에 비례하는 저항

3) 시험장소의 환경조건

차량의 정상적인 운행에 적합하여야 한다. 특히 기상조건으로 눈, 비나 바람 등의 영향이 없어야 한다.

4) 시험의 종류 및 목적

(1) 개활지 주행저항시험

개활지에서 주행저항시험을 실시하여 해당차량의 주행저항특성을 확인한다.

(2) 터널 주행저항시험

터널에서 주행저항시험을 실시하여 해당차량의 주행저항특성을 확인한다.

5) 시험방법

(1) 차량조건

가. 차량의 편성은 실제로 운행되는 편성으로 한다.

나. 시험하중은 만차상태로 한다.

다. 차량은 운전규정에 따라 충분히 정비되어 있어야 한다.

(2) 측정 장소

선로는 통상으로 정비되어 있는 직선 평탄로로 한다. 다만, 여의치 않을 경우에는 관련자 협의에 따르는 것으로 한다.

(3) 측정 장비

주행속도, 주행시간, 주행거리를 측정할 수 있고, 이의 기록 및 분석에 적합한 장비로 한다.

(4) 측정방법

가. 일정속도로 가속한 후 주간제어기의 노치(Notch)를 오프(off)한 후 탄행으로 시험한다.

나. 탄행초기속도는 최고속도부터 10 km/h 단위로 10 km/h까지로 한다.

다. 탄행말기속도는 각각의 탄행초기속도에서 노치오프(Notch off) 시간 후 측정구간을 통과한 지점의 속도로 한다.

라. 탄행 시의 주행속도, 주행시간, 주행거리를 기록한다.

마. 측정횟수는 측정구간에 대해 상행과 하행방향의 각 2회 측정하는 것으로 한다.

6) 결과분석방법
(1) 측정 단위속도별 주행저항계산은 KS R 9217 등을 참고하여 구한다.
(2) 상하행 장벽 2회 시험하여 측정한 주행저항 값을 산술평균한다.
(3) 속도를 가로축으로 주행저항을 세로축으로 하는 그래프를 그린다. 다만, 평탄 직선로가 아닐 경우 구배 및 곡선에 따른 저항을 보상한 값을 사용한다.

7) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험하중
(4) 시험구간 및 선로상태
(5) 시험기의 종류-형식-설치위치 및 구성도
(6) 측정항목
(7) 기타 분석방법 등 필요한 사항

5.4.11 공력특성시험
1) 적용범위
해당 철도차량의 공력특성에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다.
2) 시험목적
차량의 주행저항은 일반적으로 속도의 이차항으로 표현되는데 이차항의 계수는 차량의 고유한 공력특성을 반영한 것이므로 공력특성계수라 부른다. 공력특성 시험의 목적은 설계시 적용한 공력특성계수와 실제 차량 제작결과 주행시 발생되는 공력특성계수가 적절한가를 평가하는 것을 목적으로 한다. 또한 공기역학특성시험 및 압력변화시험은 도시철도차량(모노레일경전철)이 주행 시 발생하는 대기속도, 압력변화 등을 평가하기 위해 최고속도가 160km/h를 초과하는 철도차량에 대해서만 한정하여 실시한다.
3) 참고규격
(1) KS C IEC 61133: 전기 견인 및 엔진 견인 철도 차량의 사용 전 완성차 시험 방법
(2) IEC 62498-1: Railway applications. Environmental conditions for equipment. Equipment on board rolling stock
(3) EN 14067-1: Railway applications. Aerodynamics. Symbols and units
(4) EN 14067-2: Railway applications. Aerodynamics. Aerodynamics on open track
(5) EN 14067-3: Railway applications. Aerodynamics. Aerodynamics in tunnels
(6) EN 14067-4: Railway applications. Aerodynamics. Requirements and test procedures for aerodynamics on open track
(7) EN 14067-5: Railway applications. Aerodynamics. Requirements and test procedures for aerodynamics in tunnels
(8) EN 14067-6: Railway applications. Aerodynamics. Requirements and test procedures for cross wind assessment
4) 시험항목

1) \[R = a + bV + cV^2 \]
주행저항(R)은 속도V의 2차함수로 a, b는 기계적계수를, c는 공력특성계수를 의미한다.
(1) 공력특성계수시험
(2) 공기역학특성시험
(3) 압력변화시험

5) 시험 방법 및 판정기준
(1) 공력특성계수시험
가) 시험조건
 가) 차량은 시운전에 적합한 상태의 편성열차 상태여야 한다.
 나) 개활지의 직선평탄선로에서 시험을 수행하며 선로는 건조한 상태여야 한다.
 다) 시험속도는 열차의 최고속도로 선정한다.
나. 시험방법
 가) 타행상태의 차량속도와 이동거리의 이용하여 시험속도별 주행저항을 산출한다.
 나) 주행저항은 최고속도에서 정지상태까지 확인할 수 있어야 한다.
 다) 주행저항은 환경에 따라 많은 변수를 내포하고 있으므로 상, 하행을 각각 2회 왕복하여 측정하고 결과를 반영해야 한다.
다. 판정기준
 설계에서 사용한 공력특성계수(DESIGN)와 시험결과로 산정한 공력특성계수(MEASURE)를 비교하여 그 결과는 아래와 같이한다.

\[C_{\text{DESIGN}} \geq C_{\text{MEASURE}} \]

공력특성계수시험은 주행저항시험 결과의 \(c \)값(공력특성계수)으로 제출하며 추가 시험을 실시하지 않는다.

(2) 공기역학특성시험
가) 시험조건
 가) 차량은 시운전에 적합한 상태의 편성열차 상태여야 한다.
 나) 선로주변 작업자 및 승강장 승객에 대한 후류 효과 안전성 입증을 위한 허용 대기속도 측정 시험은 개활지의 직선평탄선로에서 수행하며 선로는 건조한 상태여야 한다. 또한 시험로는 열차의 공기 흐름을 방해하는 설치물이 없어야 한다.
 다) 시험조건은 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 6.2.3.13, EN 14067-1, EN 14067-2, EN 14067-4 등참조할 수 있다.
나. 시험방법
 전체 열차가 통과하는 동안 주행범 상면 0.2m 및 1.4m 높이, 궤도 중심으로부터 3.0m 인 지점에서 발생되는 대기속도를 측정한다. 이때 대기속도는 최소 첫 차축이 지나기 전 4초에서 마지막 차축이 지난 후 10초까지의 기간 동안 측정되어야 한다.
다. 판정기준
 허용 대기속도 시험의 결과는 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)의 4.2.6.2(Aerodynamic effects), EN 14067-2, EN 14067-4 등을 참고할 수 있다.

(3) 압력변화시험
가) 시험조건
 가) 차량은 시운전에 적합한 상태의 편성열차 상태여야 한다.
 나) 선두 압력 펌스 안전성 입증을 위한 선로주변에서의 최대 압력변화시험은 개활지의 직선평탄선로에서 수행하며 선로는 건조한 상태여야 한다. 다만, 신청자(제작자)는
해석적인 방법으로 해당 시험을 대신하여 입증할 수 있다.
다) 세부적인 시험조건은 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)
의 6.2.3.14 및 6.2.3.15, EN 14067-1, EN 14067-2, EN 14067-3, EN 14067-4, EN
14067-5 등을 참고할 수 있다.

나. 시험방법
가) 선로주변에서의 최대 압력변화시험
주행범 높이 1.5m ~ 3m, 궤도 중심으로부터 2.5m 거리의 범위에 걸쳐 열차가 전체 통과
하는 동안 발생되는 최대 허용 압력변화(peak-to-peak)를 측정한다.
다) 판정기준
압력변화시험의 결과는 유럽연합(EU)의 기술규정(Commission Regulation No 1302/2014)
의 4.2.6.2(Aerodynamic effects), EN 14067-2, EN 14067-3, EN 14067-4, EN 14067-5
등을 참고할 수 있다.

6) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 시험일시 및 기후
(2) 차량편성상태, 측정차량
(3) 시험기의 종류형식설치위치 및 구성도
(4) 사용한 필터특성
(5) 측정항목
(6) 기타 분석방법 등 필요한 사항

5.4.12 냉난방환기시험
1) 적용범위
해당 철도차량에 적용되는 냉난방 환기장치의 설계적합성 또는 형식등등성을 시험으로 입증하
는 경우에 적용된다.
2) 참고규격
신청자는 아래의 규격 등을 참고하여 적합하다고 판단되는 규격으로 기술기준의 요구 사항을
입증 할 수 있다.
(1) KS R 9198:철도 차량의 냉방 및 난방의 온도 측정 방법
(2) KS R 9200:철도 차량-환기 성능 시험 방법
(3) EN 14813-1:Railway applications. Air conditioning for driving cabs. Comfort parameters
(4) EN 14813-2:Railway applications. Air conditioning for driving cabs. Type tests
(5) EN 14750-1:Railway applications. Air conditioning for urban and suburban rolling
stock. Comfort parameters
(6) EN 14750-2:Railway applications. Air conditioning for urban and suburban rolling
stock. Type tests
(7) UIC 651:Layout of driver’s cabs in locomotives, railcars, multiple-unit trains and
driving trailers
(8) UIC 553:Heating, ventilation and air-conditioning in coaches
(9) UIC 553-1:Heating, ventilation and air-conditioning in coaches – Standard tests
3) 시험 방법
(1) 차량 조건
가. 차량편성은 실제 운행편성으로 한다.
나. 측정은 차중(동력차, 부수차 각1량씩)별로 실시한다.
다. 시험하중은 공차상태(측정차 및 측정기자재 포함)로 할 수 있다. 다만, 공차조건으로 시험한 경우에는 만차조건에서도 기준을 만족한다는 것을 냉난방장비용량계산서 등을 통해 입증할 수 있다.
라. 차량은 운전규제에 따라 충분히 정비되어 있어야 한다.
마. 시험차량은 해당 철도차량의 영업운행조건에 준하여 주행한다.

(2) 시험항목

<table>
<thead>
<tr>
<th>측정 항목</th>
<th>세부 시험 항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>운전가동시험</td>
<td>냉방장치시험</td>
</tr>
<tr>
<td></td>
<td>난방장치시험</td>
</tr>
<tr>
<td>온도분포측정시험</td>
<td>냉방온도변화시험</td>
</tr>
<tr>
<td></td>
<td>난방온도변화시험</td>
</tr>
<tr>
<td></td>
<td>차량출입문 개폐영향시험</td>
</tr>
<tr>
<td>한기장치시험</td>
<td>성능시험</td>
</tr>
<tr>
<td></td>
<td>등량측정시험</td>
</tr>
</tbody>
</table>

(3) 측정 장비
온도계와 측정계는 KS R 9198에서 규정한 열전대(Thermocouple)나 동등 이상의 성능을 가진 성능을 가진 것으로 한다.

(4) 측정방법
가. 운전가동시험
가) 냉난방제어장치를 통하여 각 차량의 냉방, 난방장치(프리히팅 포함)의 동작상태를 확인한다.
나) 운전모드(반냉, 전냉 또는 1/3 난방, 2/3 난방, 전난방 등)가 별도로 있는 경우 각 운전모드에 따라 시행한다.
다) 냉방인 경우 모든 차량의 냉방장치가 일시에 가동하지 않고 순차적으로 가동하는지 확인할 수 있어야 한다.
라) 난방인 경우 각 장치의 이상발열이 있는지 확인한다.
나. 온도분포측정시험
가) KS R 9198 또는 EN 14750-2의 냉난방 온도 측정 방법을 참고할 수 있다.
나) 냉방 및 난방 중인 경우 시간의 경과에 따른 각 지점의 온도를 측정한다.
다) 3회 측정한 결과를 평균한다.
라) 차량 출입문 개폐시 온도변화를 확인할 수 있도록 일정시간 동안 지정된 출입문을 개방하여 온도변화를 측정한다.
다. 한기장치시험
가) KS R 9200 철도 차량-환기 성능 시험 방법에 따른다.
나) 실내 공기질 수준은 “실내 공기질 관리를 위한 대중교통차량의 제작운영관리지침(환경부고시)”에 따라 평가한다.

4) 결과의 분석
(1) EN 14813-1, EN 14813-2, EN 14750-1, EN 14750-2, KS R 9198, KS R 9200, UIC 553, UIC 553-1 등을 참고할 수 있다.
(2) 실내 공기질 관리 위대중교통차량의 제작·운영관리지침(환경부고시)에 따른다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 시험기의 종류·형식·설치위치 및 구성도
(4) 측정항목별 결과
(5) 기타 특이사항

5.4.13 지상설비 연계동작시험
1) 적용범위
해당 철도차량에 적용되는 차상신호장치의 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 용어정의
(1) ATC : 열차자동제어장치(Automatic Train Control)
(2) ATO : 열차자동운전장치(Automatic Train Operation)
(3) TWC : 차상 지상간 통신장치(Train Wayside Communication)
(4) ATP : 열차자동방호장치(Automatic Train Protection)
3) 시험의 종류 및 목적
본 시험규격은 지상 신호제어설비(ATC/ATS/ATP/ATO/TWC 등의 지상자)가 설치된 시운전 노선에서 시험대상 차량에 설치된 각종 기기중 지상설비와 연계하여 운용되는 신호장치, 열차무선방치, 방송장치 등의 지상설비 연계동작을 확인하기 위한 시험이다.
(1) 신호장치 시험 : 신호장치의 기능을 시험하기 위한 항목이다.
(2) 열차무선장치 지상연계 시험 : 차상열차무선장치와 지상열차무선장치와의 통화확인으로 인한 열차무선장치의 성능을 확인하기 위한 시험이다.
(3) 방송/표시기장치 지상연계시험 : 각 방송/표시기장치 지상장치로부터 차상장치가 전송받아 정확하게 방송 및 표시하는지 확인하는 시험이다.
(4) 열차운행정보전송장치 지상연계시험 : 지상에 설치된 열차운행정보전송장치와 정상적으로 데이터를 송수신하는지 확인하는 시험이다.
4) 시험 방법 및 판정기준
(1) 시험조건
가. 집전장치의 상승 및 하강이 가능하여야 한다.
나. 지상신호설비와 철도무선장치가 설치된 시운전 노선에서 시험이 수행되어야 한다.
(2) 정지상태 시험
가. 신호장치 정지상태 시험 : 열차의 정지 상태에서 신호장치의 기능을 시험하여 이상이 없어야 한다.
나. 출발전 시험 및 일상시험 : 열차가 본선에 진입하기 전 차량신호장치의 자기진단 기능을 실시한 후 종합제어장치의 모니터에 이상발생 현시가 없어야 한다. (다만, 종합제어장치가 별도로 설치된 차량에 한한다)

(3) 운행시험
가. 신호장치 기능시험
가) 역전기를 역행 위치로 설정하여 차량을 운행하면서 지상에 설치된 신호장치 지상차로부터 신호를 정상적으로 수신하여 기관사 표시장치에 표시되는지 확인한다.
나) 지상신호장치로부터 수신된 제어정보에 따라 차량이 정상적으로 속도제어, 자동운행제어, 불연속정보 전송 제어 등의 기능이 정상적으로 수행되는지 확인한다.
다) 지상이 ATS/ATC/ATP 제어구역이 혼재되어 있는 운행 노선의 경우, 제어구역 변경에 따라 차량신호장치가 지상신호장치에 대응하는 장치로 전환제어 및 동작되는지 확인한다.
라) 후진검지 및 제동체결 시험 : 열차의 운행방향이 전진인 상태에서 열차가 후진하게 되는 경우, 제동이 체결되는지 확인한다. 단, 해당 기능을 가지고 있는 경우에 적용한다.

나. 열차운전장치 지상연계 시험
가) 시운전선로의 모든 차량운전한다
나. 시험방법
(가) 기지국에서도의 호출시험을 하여 이상이 없어야 한다.
(나) 열차에서의 호출시험을 하여 이상이 없어야 한다.
(다) 제어패널 조작시험을 하여 이상이 없어야 한다.
(라) 후진방 열차운전장치 체결시험을 하여 이상이 없어야 한다. 다만, 차량발주자가 요구하는 경우에는 한다.
(마) 시험결과는 육성으로 확인하여 이상이 없어야 한다.

다. 방송/표시기장치 지상연계 시험
가) 시험조건
(가) 시운전 선로에 방송/표시기장치의 제어정보를 정상적으로 송수신할 수 있도록 관련된 지상장치 및 차량장치가 정상 동작되어야 한다.
(나) 자동안내방송 및 허니션을 할 수 있도록 방송/표시기장치의 모드는 자동모드로 설정해야 한다.
나. 시험 방법
(가) 열차를 수동 또는 자동으로 운행한다.
(나) 각종 역 안내, 공지사항, 출발예고 안내 등의 방송 및 현시내용이 이상이 없어야 한다.
다. 표시기장치는 수신된 정보에 의해 현시상태를 유지하려는지 확인하여 이상이 없어야 한다.
라. 열차운행정보전송장치 지상연계시험
가) 시험조건
(가) 1개 편성 단위로 차량이 준비되고, 차량의 종합제어장치 등과 지상에 설치된 열차운행정보전송장치 지상설비가 정상적으로 동작되어야 한다.
(나) 지상설비가 설치되지 않은 경우에는 지상설비와 호환되는 간이설비를 이용하여 지상설비를 구축한다.
(다) 시험 차량이 지상의 무선안테나에 접근이 용이한 환경이 갖추어지고 시험 당일

에 날씨가 심한 강우나 강설 또는 연무가 발생하지 않아야 한다.

나) 시험 방법
(가) 종합제어장치와 연계동작 확인 : 차량의 종합제어장치와 인터페이스가 정상적으로 이루어지는지 확인한다. 다만, 종합제어장치가 별도로 설치되는 경우에 한한다.

(나) 통신 확인 : 열차운행정보전송장치 차상설비와 지상설비간 통신이 정상적으로 이루어지는지 확인한다.

(다) 통신속도 확인 : 열차운행정보전송장치 차상설비와 지상설비간 통신이 지정된 통신속도로 이루어져야 한다.

(리) 이격거리 시험 : 시험 차량과 지상 안테나간의 지정된 거리내에서 통신이 정상적으로 이루어지는지 확인한다.

5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 시험품의 구성 상태 및 시험품
(3) 시험한 차량
(4) 시운전 노선 정보
(5) 측정항목별 결과
(6) 기타 특이사항

5.4.14 주요기기온도 및 상태시험
1) 적용범위
해당 철도차량의 주요기기 운도 및 상태에 대한 설계적합성 또는 형식등등성을 시험으로 입증하는 경우에 적용된다.
2) 시험의 종류 및 목적
(1) 온도시험
주행중 주요기기의 운도를 측정하여 안전한 범위 이하로 제한되는지 여부의 확인을 목적으로 한다.
(2) 상태시험
주행중 혹은 주행후 주요기기의 동작상태를 확인하여 이상동작이나 현상 발생여부의 확인을 목적으로 한다.
3) 참고규격
IEC 62498-1: Railway applications. Environmental conditions for equipment. Equipment on board rolling stock
4) 시험방법 및 판정기준
(1) 시험조건
가. 출발시 시험노선 전구간을 왕복운영하며 반복실시한다.
나. 가속은 가능한한 최대견인력을 발휘하도록 하며 정차시 감속은 최대 제동력을 발휘하도록 한다.
다. 역과 역사이의 구간에서는 하용 최고속도로 운행한다.
라. 역에서의 정차시간은 영업운전시 최소 정차시간으로 한다.
마. 주행중 차량은 정상동작조건, 추진제어장치 개방운전조건, 보조전원장치 개방운전조건,
주압축기 개방운전조건하에서 각각 실시한다. 다만, 개방운전조건은 형식시험으로 한다.
(2) 하중조건
가. 형식승인 : 만차상태
나. 완성검사 : 공차상태
(3) 운도시험
가. 측정항목
가) 외기 온도
나) 견인전동기 프레임 온도
다) 견인전동기 배어링 캡 온도
라) 견인전동기 냉각공기 배기구 온도
마) 추진제어 인버터 냉각유닛 표면 온도
바) 필터리액터 코일 온도
사) 축상 온도
아) 리액션의러트
자) 기타 필요한 부위
나. 시험방법 및 판정기준
가) 측정항목 온도를 시험운행동안 기록하여 규정된 온도범위 이내이어야 한다.
나) 축상온도는 운행 전·후에 측정하여 기록한다.
(4) 상태시험
가. 측정항목
가) 주행 전·후의 고압기기 상태
나) 보조전원장치 동작상태
다) 방송장치 및 객실 안내 표시 장치 동작 상태
라) 각종 등구류 동작 상태
마) 열차우선장치 동작 상태
바) 승객정보장치 동작 상태
사) 출입문 동작 상태
아) 소비전력 및 회생전력
자) 차량 속도
나. 시험방법 및 판정기준
가) (4)-가-가에 대하여 주행 전·후의 상태를 확인하여 이상이 없어야 한다.
나) (4)-가-나-~ 사)의 각종 장치를 주행중 영업운전시와 동일하게 동작시키며 이상동 작 유무를 확인한다.
다) (4)-가-아-~ 자)를 주행중 측정하여 소비전력 및 회생전력, 회생율, 표정속도 및 회차 시간을 산정한다.
5) 시험기록
기록양식에는 다음과 같은 사항을 기록한다.
(1) 측정일시 및 기후
(2) 차량편성상태 및 측정차량
(3) 측정구간
(4) 주행속도
(5) 주행거리
(6) 측정구간의 곡선반지름, 기울기, 구조 등
(7) 시험기의 종류·형식·설치위치 및 구성도
(8) 사용한 필터특성
(9) 측정항목별 결과
(10) 기타 특이사항

5.4.15 중련운전시험

1) 적용범위
해당 철도차량의 중련운전에 대한 설계적합성 또는 형식동등성을 시험으로 입증하는 경우에 적용된다. 중련 또는 복합운행 관련 시험은 발주자의 요구사항이 있는 경우에만 실시한다. 또한 중련 또는 복합운행이 실시되지 않는 차량은 구원운전을 위한 세부항목만 선택적으로 시행한다.

2) 용어정의
평형속도: 역행 시 견인력과 주행저항이 균형을 이루는 결정되는 속도를 말한다.

3) 참고규격
(1) KS C IEC 61133: 전기 견인 및 엔진 견인 척도 차량의 사용 전 완성차 시험 방법
(2) EN 15566: Railway applications. Railway rolling stock. Draw gear and screw coupling
(3) EN 15020: Railway applications. Rescue coupler. Performance requirements, specific interface geometry and test methods
(4) UIC 825: Technical specification for the supply of draw hooks with nominal load equal to 250 kN, 600 kN or 1000 kN for tractive and trailing stock
(5) UIC 826: Technical provisions for the supply of screw couplings for tractive and trailing stock
(6) UIC 527-1: Coaches, vans and wagons - Dimensions of buffer heads - Track layout on S-curves
(7) UIC 561: Means of intercommunication for coaches
(8) UIC 520: Wagons, coaches and vans - Draw gear - Standardisation
(9) UIC 521: Coaches and vans, wagons, tractive stock - Clearance to be provided at vehicle extremities
(10) KS R 9208: 철도차량 - 자동연결기
(11) KS R 9209: 철도차량 - 밀착 연결기
(12) KS R 9219: 철도차량용 자동 복합 연결기

4) 시험 방법
(1) 시험항목
가. 중련운전시험
나. 연결/분리 및 축전지 취소 기능 확인
다. 방송표시장치시험
(2) 시험조건
가. 본 시험 전에 구내 시운전을 통하여 중련편성 시의 문헌설계가 후부편성을 포함하여 중련편성 척차서 해당 시험항목에 대해 모두 정상적으로 작동할 때 확인하여야 한다.
나. 차량형식시험에서는 만차중량(W2)의 중량조건을 만족하고, 완성검사에서는 정비중량(W1)조건을 만족하여야 한다.

(3) 중련운전시험
가. 가속도
 가) 역행시험의 가속도시험 절차에 따라 실시한다.
 나) 최고속도까지의 도달시간, 이동거리를 측정하여 기준치를 만족하여야 한다.
 다) 정지상태에서 협의된 속도까지의 가속도를 측정하여 기준치를 만족하여야 한다.

나. 구배기동시험
 역행시험의 구배기동시험 절차에 따라 실시한다.

다. 제동성능
 가) 제동시험 절차에 따라 실시한다.
 나) 최고속도 및 임의속도에서의 비상제동거리를 측정하여 기준치를 만족하여야 한다.

라. 집전장치
 가) 집전장치시험의 전류집전시험 절차에 따라 실시한다.
 나) 운행 시 집전장치에 대한 영향을 측정하기 위하여 후부편성의 집전장치에 대하여
 이성 및 접촉력을 측정하여 기준치를 만족하여야 한다.
 다) 열차 주행시 속도에 따른 집전장치 제어 압력값을 계측을 통해 확인한다.

(4) 연결/분리 및 축전지 취소 기능 확인
 가. 중련연결 및 분리를 위한 회로변경
 나. 중련상태에서 후부편성의 축전지 취소 버튼 동작 시 중련편성 전체의 축전지 취소 기
 능 확인
 다. 복합열차 승강문 열림상태 유지

(5) 방송표시기장치 시험
 중련시 방송장치 및 승객정보장치 작동에 대해 확인하고자 시행한다.
 가. 방송장치 시험
 5.3.16 기능 및 동작 시험의 방송장치 시험방법 및 판단기준을 만족하는지 확인한다.
 나. 승객정보장치 시험
 5.3.16 기능 및 동작 시험의 승객정보장치 시험방법 및 판단기준을 만족하는지 확인
 한다.

5) 시험기록
 기록양식에는 다음과 같은 사항을 기록한다.
 (1) 측정일시 및 기후
 (2) 차량편성상태 및 측정차량
 (3) 측정구간
 (4) 주행속도
 (5) 주행거리
 (6) 측정구간의 곡선반지름, 기울기, 구조 등
 (7) 측정인원수 및 측정기재의 무게
 (8) 시험기의 종류-형식-설치위치 및 구성도
 (9) 사용한 필터특성
 (10) 측정항목별 결과
 (11) 기타 특이사항
[별표 1] 도시철도차량(모노레일경전철)의 적합성평가

<table>
<thead>
<tr>
<th>적합성 평가항목</th>
<th>설계적합성검사</th>
<th>설계적합성검사</th>
<th>차량형식시험</th>
</tr>
</thead>
<tbody>
<tr>
<td>제1장 개요</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 목적</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 적용범위</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 주요내용</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>제2장 적합성평가</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>제3장 필수요구사항</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 일반사항</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 안전</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.1 차량한계</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 차량한계</td>
<td>○</td>
<td>○</td>
<td>차량형식시험</td>
</tr>
<tr>
<td>2) 차량징량</td>
<td>○</td>
<td>○</td>
<td>중량측정시험</td>
</tr>
<tr>
<td>3) 중량분포</td>
<td>○</td>
<td>○</td>
<td>중량측정시험</td>
</tr>
<tr>
<td>4) 차량구조</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>5) 차량표시</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3.2.2 주행안전</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) 전복방지</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3.2.3 충돌안전</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) 충돌안전설계</td>
<td>○</td>
<td>○</td>
<td>충돌안전시험</td>
</tr>
<tr>
<td>8) 철도차량의 연결</td>
<td>○</td>
<td>○</td>
<td>충돌안전시험</td>
</tr>
<tr>
<td>3.2.4 화재안전</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) 화재안전설계</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10) 화재위험등급</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11) 화재예방</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12) 화재진화 방지</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>13) 화재감지 및 경보</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>14) 화재발생시 대피</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>15) 화재진압설비</td>
<td>○</td>
<td></td>
<td>자동화재진압설비시험</td>
</tr>
<tr>
<td>16) 화재안전설비의 작동상태 표시</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.5 전기안전</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17) 전기안전설계</td>
<td>○</td>
<td>○</td>
<td>전기안전시험</td>
</tr>
<tr>
<td>18) 전기설비설계</td>
<td>○</td>
<td>○</td>
<td>전기설비설계시험</td>
</tr>
<tr>
<td>19) 전기차단</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20) 전류저항 및 접지</td>
<td>○</td>
<td></td>
<td>접지시험</td>
</tr>
<tr>
<td>21) 전기압도장애의 역제</td>
<td>○</td>
<td></td>
<td>유도장애시험</td>
</tr>
<tr>
<td>22) 오조작방지</td>
<td>○</td>
<td></td>
<td>전자제어기작동상태시험</td>
</tr>
<tr>
<td>23) 배선 및 전기기기의 배치</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.6 위험도분석</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24) 화재안전 위험도</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25) 충돌안전 위험도</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26) 탈선안전 위험도</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.7 소프트웨어</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27) 소프트웨어 설계</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28) 소프트웨어 구현</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29) 소프트웨어 시험</td>
<td>○</td>
<td></td>
<td>기능 및 동작시험</td>
</tr>
<tr>
<td>30) 소프트웨어 설치</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31) 소프트웨어 유지보수</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 성능</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1 운행조건</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32) 기후조건</td>
<td>○</td>
<td></td>
<td>주요기기 온도 및 상태시험</td>
</tr>
<tr>
<td>적합성 평가항목</td>
<td>설계적합성검사</td>
<td>기술검토서</td>
<td>도면</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>33) 하중조건</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34) 운전조건</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2 운행성능</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35) 최고속도</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36) 역행성능</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37) 제동성능</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38) 접전성능</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39) 열차주행저항</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40) 전동</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41) 승차감</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 인터페이스</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.1 차량-전력</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42) 전압 및 주파수 범위</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>43) 최적제동</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>44) 접전장치 정적 접촉력</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>45) 전차선측과의 동적 거동</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>46) 접전장치 배열</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>47) 점연규격 접합</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>48) 접전장치 접연</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3.4.2 차량-신호</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49) 지상신호장치와 인터페이스</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>50) 차량신호장치와 인터페이스</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3.4.3 차량-통신</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51) 승객정보</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52) 차내방송장치</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>53) 통신장치</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>54) 승객정보</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>55) 열차운행정보 저장장치</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.4 차량-궤도</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56) 선로조건</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57) 캔트 무폭</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58) 궤도에 기해지는 하중</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59) 선로의 유지보수 한계값</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.5 차량-기관사</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60) 운전체어대</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>61) 운전석</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>62) 운전실 조명</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>63) 기관사 시야확보</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>64) 디스플레이 장치와 스크린</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>65) 제어장치와 표시장치</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>66) 기관사 감시</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>67) 운전실 표시</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>68) 운전실 차량도구와 휴대용 장비</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>69) 운전실 화경</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>3.5 운영 및 유지관리</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1 유지보수 기준 - 70)</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2 유지보수를 위한 자료</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71) 일반자료</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>적합성 평가항목</td>
<td>설계적합성검사</td>
<td>도면</td>
<td>핵심서 (개산서)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>설계적합성검사</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>도면</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>핵심서</td>
<td>(개산서)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6 운용한계
3.6.1 안전운행 - 76)
3.6.2 보간 - 77)
3.6.3 소음
78) 정지소음 측정 ○ 소음시험
79) 주행소음 측정 ○ 소음시험
80) 환경소음 측정 ○ 소음시험

3.6.4 구원운전 - 81)
82) 선로주변 및 승강장에서의 하용 대기속도 ○ ○ 공력특성시험
83) 선로주변에서의 최대 압력변화 ○ ○ 공력특성시험
84) 환풍 ○ ○

4장 주요장치별 기준
4.1 일반사항
85) 구조체 설계 ○ ○ 누수시험
86) 구조체 안전 ○ ○ 구조체함치료시
87) 설내설비 ○ ○
88) 리프팅 ○ ○ 차체리프팅시험
89) 장애물 제거기 ○ ○
90) 부식억제 ○
91) 출입문 ○ ○ 출입문시험
92) 출입문-스크린도어 연계 ○ ○ 출입문시험
93) 차량간 통로문 ○ ○ 출입문시험
94) 냉난방환기장치 ○ ○ ○ 냉난방환기장치시험
95) 등구류 ○ ○ 기능 및 동작시험
96) 의자 및 선반 ○ ○ 의자강도시험
97) 전면유리창 및 기타 유리창 ○ ○ ○ 유리창시험
98) 운전실 및 비상탈출구 ○ ○ ○ 기능 및 동작시험
100) 승객용 비상 출구 ○ ○
101) 경적 ○ ○ 기능 및 동작시험
102) 열차비상용품 ○

4.2 차체 및 설비
85) 구조체 설계 ○ ○ 누수시험
86) 구조체 안전 ○ ○ 구조체함치료시
87) 설내설비 ○ ○
88) 리프팅 ○ ○ 차체리프팅시험
89) 장애물 제거기 ○ ○
90) 부식억제 ○
91) 출입문 ○ ○ 출입문시험
92) 출입문-스크린도어 연계 ○ ○ 출입문시험
93) 차량간 통로문 ○ ○ 출입문시험
94) 냉난방환기장치 ○ ○ ○ 냉난방환기장치시험
95) 등구류 ○ ○ 기능 및 동작시험
96) 의자 및 선반 ○ ○ 의자강도시험
97) 전면유리창 및 기타 유리창 ○ ○ ○ 유리창시험
98) 운전실 및 비상탈출구 ○ ○ ○ 기능 및 동작시험
100) 승객용 비상 출구 ○ ○
101) 경적 ○ ○ 기능 및 동작시험
102) 열차비상용품 ○

4.3 주행장치
103) 주행장치 설계 ○ ○ 대차시험
104) 주행장치들 ○ ○ ○ 차륜/차축조립시험
105) 차축 및 주행륜 ○ ○ ○ 차륜/차축조립시험
106) 차축조립장치 ○ ○
107) 현가장치 ○ ○
108) 차체지지장치 ○ ○ 차체지지장치시험
109) 구동장치 ○ ○ 감속기 부품시험

4.4 제동장치
110) 제동장치 설계 ○ ○ 제동장치시험
111) 제동 요구사항 ○ ○ 제동장치시험
112) 비상제동 ○ 제동시험
113) 상응제동 ○ 제동시험
114) 주차제동 ○ 제동시험
115) 기초제동 ○ 제동장치시험
116) 합측공기 공급장치 ○ ○ 제동장치시험
<table>
<thead>
<tr>
<th>적합성 평가항목</th>
<th>설계적합성검사</th>
<th>도면</th>
<th>핵심서(계산서)</th>
<th>차량형식시험</th>
</tr>
</thead>
<tbody>
<tr>
<td>117) 활주장치</td>
<td>○</td>
<td>○</td>
<td></td>
<td>제동장치시험</td>
</tr>
</tbody>
</table>

4.5 추진장치
- 118) 설계 요구사항 ○ ○ ○ 추진제어장치시험
- 119) 인버터/컨버터 ○ ○ 추진제어장치시험
- 120) 인전회전기 ○ ○ 추진제어장치시험
- 121) 보호기능 ○ ○ ○ 추진제어장치시험
- 122) 급전장치 ○ ○ ○ 추진제어장치시험
- 123) 비상운동 ○ ○ 추진제어장치시험
- 124) 피뢰기 ○ ○ ○ 추진제어장치시험
- 125) 주유조 ○ ○ ○ 추진제어장치시험
- 126) 차단기 ○ ○ ○ 추진제어장치시험
- 127) 펌터리액터 ○ ○ ○ 추진제어장치시험
- 128) 교-직절환기 ○ ○ ○ 추진제어장치시험
- 129) 주변압기 ○ ○ ○ 추진제어장치시험
- 130) 비상접지스위치 ○ ○ ○ 추진제어장치시험

4.6 보조전원장치
- 131) 보호기능 ○ ○ ○ 보조전환장치시험
- 132) 연장급전 ○ ○ ○ 보조전환장치시험
- 133) 유도장해의억제 ○ ○ ○ 보조전환장치시험
- 134) 보조전원장치용 인버터 ○ ○ ○ 보조전환장치시험
- 135) 축전지 ○ ○ ○ 보조전환장치시험

4.7 차상신호장치
- 136) 시스템 일반 ○ ○ ○ 차상신호장치시험 지상설비연계동작시험
- 137) 열차자동정지장치(ATS) ○ ○ ○ 차상신호장치시험 지상설비연계동작시험
- 138) 열차자동방호장치(ATP) ○ ○ ○ 차상신호장치시험 지상설비연계동작시험
- 139) 열차자동운전장치(AT0) ○ ○ ○ 차상신호장치시험 지상설비연계동작시험

4.8 종합제어
- 140) 종합제어장치의 설계 ○ ○ ○ 종합제어장치시험
- 141) 운행상태 확인장치 ○ ○ ○ 종합제어장치시험
- 142) 열차운행기능 ○ ○ ○ 종합제어장치시험
- 143) 출입문제어 ○ ○ ○ 종합제어장치시험
- 144) 무인운전 ○ ○ ○ 종합제어장치시험

4.9 연결장치
- 145) 연결기 ○ ○ ○ 종합제어장치시험
- 146) 동로연결장치 ○ ○ ○ 종합제어장치시험
별표 2 기술기준 세부항목과 필수요구사항의 관계

<table>
<thead>
<tr>
<th>기술기준 항목</th>
<th>필수 요구사항</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>안전</td>
</tr>
<tr>
<td>3. 필수 요구사항</td>
<td></td>
</tr>
<tr>
<td>3.1 일반사항</td>
<td></td>
</tr>
<tr>
<td>3.2 안전</td>
<td></td>
</tr>
<tr>
<td>3.2.1 차량한계</td>
<td></td>
</tr>
<tr>
<td>1) 차량한계</td>
<td>○</td>
</tr>
<tr>
<td>2) 차량중량</td>
<td>○</td>
</tr>
<tr>
<td>3) 중량분포</td>
<td>○</td>
</tr>
<tr>
<td>4) 차량구조</td>
<td>○</td>
</tr>
<tr>
<td>5) 차량표시</td>
<td>○</td>
</tr>
<tr>
<td>3.2.2 주행안전</td>
<td></td>
</tr>
<tr>
<td>1) 전복방지</td>
<td>○</td>
</tr>
<tr>
<td>3.2.3 충돌안전</td>
<td></td>
</tr>
<tr>
<td>1) 충돌안전설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 철도차량의연결</td>
<td>○</td>
</tr>
<tr>
<td>3.2.4 화재안전</td>
<td></td>
</tr>
<tr>
<td>1) 화재안전설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 화재위험등급</td>
<td>○</td>
</tr>
<tr>
<td>3) 화재예방</td>
<td>○</td>
</tr>
<tr>
<td>4) 화재전파방지</td>
<td>○</td>
</tr>
<tr>
<td>5) 화재감지 및 경보</td>
<td>○</td>
</tr>
<tr>
<td>6) 화재발생시 대피</td>
<td>○</td>
</tr>
<tr>
<td>7) 화재진압설비</td>
<td>○</td>
</tr>
<tr>
<td>8) 화재안전설비의 작동상태 표시</td>
<td>○</td>
</tr>
<tr>
<td>3.2.5 전기안전</td>
<td></td>
</tr>
<tr>
<td>1) 전기안전설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 절연거리확보</td>
<td>○</td>
</tr>
<tr>
<td>3) 전기차단</td>
<td>○</td>
</tr>
<tr>
<td>4) 전류귀환 및 접지</td>
<td>○</td>
</tr>
<tr>
<td>5) 전자기유도장애의 역제</td>
<td>○</td>
</tr>
<tr>
<td>6) 오조작방지</td>
<td>○</td>
</tr>
<tr>
<td>7) 배선 및 전기기기의 배치</td>
<td>○</td>
</tr>
<tr>
<td>3.2.6 위험도분석</td>
<td></td>
</tr>
<tr>
<td>1) 적용범위</td>
<td>○</td>
</tr>
<tr>
<td>2) 위험도분석 절차</td>
<td>○</td>
</tr>
<tr>
<td>3) 위험도분석 방법</td>
<td>○</td>
</tr>
<tr>
<td>4) 위험도분석결과기록</td>
<td>○</td>
</tr>
<tr>
<td>3.2.7 철도소프트웨어</td>
<td></td>
</tr>
<tr>
<td>1) 소프트웨어안전</td>
<td>○</td>
</tr>
<tr>
<td>2) 계획수립</td>
<td>○</td>
</tr>
<tr>
<td>3) 요구사항정의</td>
<td>○</td>
</tr>
<tr>
<td>4) 소프트웨어설계</td>
<td>○</td>
</tr>
<tr>
<td>5) 소프트웨어구현</td>
<td>○</td>
</tr>
<tr>
<td>기술기준 항목</td>
<td>필수 요구사항</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>안전</td>
</tr>
<tr>
<td>6) 소프트웨어시험</td>
<td>○</td>
</tr>
<tr>
<td>7) 소프트웨어 설치</td>
<td>○</td>
</tr>
<tr>
<td>8) 소프트웨어 유지보수</td>
<td>○</td>
</tr>
<tr>
<td>9) 철도 소프트웨어 기술기준 시행</td>
<td>○</td>
</tr>
</tbody>
</table>

3.3 성능
3.3.1 운행조건
1) 기후조건 | ○ | ○ | ○ |
2) 하중조건 | ○ | ○ | ○ |
3) 운전조건 | ○ | ○ | ○ |

3.3.2 운행성능 | ○ | ○ | ○ | ○ |

3.4 인터페이스
3.4.1 차량-전력
1) 전압 및 주파수범위 | ○ | ○ | ○ | ○ |
2) 회생재생 | ○ | ○ | ○ |
3) 접전장치 전광 점축력 | ○ | ○ |
4) 전차선의 동적기동 | ○ | ○ |
5) 접전장치 배압 | ○ | ○ |
6) 절연구간 주행 | ○ | ○ |
7) 접전장치 절연 | ○ | ○ |

3.4.2 차량-신호
1) 차량신호장치와 인터페이스 | ○ | ○ | ○ |
2) 차량신호장치와 인터페이스 | ○ | ○ |

3.4.3 차량-통신
1) 선로조건 | ○ | ○ | ○ |
2) 차량방송장치 | ○ | ○ |
3) 통신장치 | ○ | ○ |
4) 송전방식 | ○ |
5) 열차운행정보 저장장치 | ○ |

3.4.4 차량-궤도
1) 선로조건 | ○ | ○ | ○ | ○ |
2) 캐니드 무작 | ○ | ○ |
3) 궤도에 가해지는 하중 | ○ | ○ |
4) 선로의 유지보수 한계값 | ○ | ○ |

3.4.5 차량-기관사
1) 운전제어대 | ○ |
2) 운전석 | ○ |
3) 운전실 조명 | ○ |
4) 기관사 지게장치 | ○ | ○ | ○ |
5) 디스플레이 장치와 스크린 | ○ | ○ |
6) 제어장치와 표시장치 | ○ | ○ | ○ |
7) 기관사 감시 | ○ | ○ |
8) 운전실 표시 | ○ | ○ | ○ |
<table>
<thead>
<tr>
<th>기술기준 항목</th>
<th>필수 요구사항</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>안전</td>
</tr>
<tr>
<td>9) 운전실 차상도구의 휴대용 장비</td>
<td>○</td>
</tr>
<tr>
<td>10) 운전실 환경</td>
<td>○</td>
</tr>
<tr>
<td>3.5 운영 및 유지관리</td>
<td></td>
</tr>
<tr>
<td>3.5.1 유지보수 기준</td>
<td>○</td>
</tr>
<tr>
<td>3.5.2 유지보수를 위한 자료</td>
<td></td>
</tr>
<tr>
<td>1) 일반자료</td>
<td>○</td>
</tr>
<tr>
<td>2) 유지보수 자료</td>
<td>○</td>
</tr>
<tr>
<td>3) 운영 관련 자료</td>
<td>○</td>
</tr>
<tr>
<td>4) 리프팅 도해 및 지침</td>
<td>○</td>
</tr>
<tr>
<td>5) 구조 관련자료</td>
<td>○</td>
</tr>
<tr>
<td>3.6 운영환경</td>
<td></td>
</tr>
<tr>
<td>3.6.1 안전운행</td>
<td>○</td>
</tr>
<tr>
<td>3.6.2 보건</td>
<td></td>
</tr>
<tr>
<td>3.6.3 소음</td>
<td></td>
</tr>
<tr>
<td>1) 평가범위</td>
<td>○</td>
</tr>
<tr>
<td>2) 평가조건</td>
<td>○</td>
</tr>
<tr>
<td>3) 정차소음측정</td>
<td>○</td>
</tr>
<tr>
<td>4) 주행소음 측정</td>
<td>○</td>
</tr>
<tr>
<td>5) 환경소음 측정</td>
<td>○</td>
</tr>
<tr>
<td>6) 평가방법</td>
<td>○</td>
</tr>
<tr>
<td>3.6.4 구원운전</td>
<td>○</td>
</tr>
<tr>
<td>3.6.5 공기역학적 특성</td>
<td></td>
</tr>
<tr>
<td>1) 선로주변 및 승강장에서의 허용 대기속도</td>
<td>○</td>
</tr>
<tr>
<td>2) 선로주변에서의 최대 압력 변화</td>
<td>○</td>
</tr>
<tr>
<td>3) 환경</td>
<td>○</td>
</tr>
<tr>
<td>4. 주요장치별기준</td>
<td></td>
</tr>
<tr>
<td>4.1 일반사항</td>
<td>○</td>
</tr>
<tr>
<td>4.2 차체 및 설비</td>
<td></td>
</tr>
<tr>
<td>1) 구조체 설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 구조체 안전</td>
<td>○</td>
</tr>
<tr>
<td>3) 실내설비</td>
<td>○</td>
</tr>
<tr>
<td>4) 리프팅</td>
<td>○</td>
</tr>
<tr>
<td>5) 장애물 제거기</td>
<td>○</td>
</tr>
<tr>
<td>6) 무식억제</td>
<td>○</td>
</tr>
<tr>
<td>7) 출입문</td>
<td>○</td>
</tr>
<tr>
<td>8) 출입문-스크린도어 연계</td>
<td>○</td>
</tr>
<tr>
<td>9) 차량간 통로문</td>
<td>○</td>
</tr>
<tr>
<td>10) 냉난방 환기장치</td>
<td>○</td>
</tr>
<tr>
<td>11) 동구류</td>
<td>○</td>
</tr>
<tr>
<td>12) 의자 및 선반</td>
<td>○</td>
</tr>
<tr>
<td>13) 전면유리창</td>
<td>○</td>
</tr>
<tr>
<td>14) 흉면유리창 및 기타 유리창</td>
<td>○</td>
</tr>
<tr>
<td>기술기준 항목</td>
<td>필수 요구사항</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>안전</td>
</tr>
<tr>
<td>15) 운전실 및 비상탈출구</td>
<td>○</td>
</tr>
<tr>
<td>16) 승객용 비상 출구</td>
<td>○</td>
</tr>
<tr>
<td>17) 경적</td>
<td>○</td>
</tr>
<tr>
<td>18) 열차비상용품</td>
<td>○</td>
</tr>
<tr>
<td>4.3 주행장치</td>
<td></td>
</tr>
<tr>
<td>1) 주행장치 설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 주행장치들</td>
<td>○</td>
</tr>
<tr>
<td>3) 차축 및 주행륜</td>
<td>○</td>
</tr>
<tr>
<td>4) 차축조립장치</td>
<td>○</td>
</tr>
<tr>
<td>5) 현가장치</td>
<td>○</td>
</tr>
<tr>
<td>6) 차체지지장치</td>
<td>○</td>
</tr>
<tr>
<td>7) 구동장치</td>
<td>○</td>
</tr>
<tr>
<td>4.4 제동장치</td>
<td></td>
</tr>
<tr>
<td>1) 제동장치 설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 제동 요구사항</td>
<td>○</td>
</tr>
<tr>
<td>3) 비상제동</td>
<td>○</td>
</tr>
<tr>
<td>4) 상용제동</td>
<td>○</td>
</tr>
<tr>
<td>5) 주차제동</td>
<td>○</td>
</tr>
<tr>
<td>6) 기초제동</td>
<td>○</td>
</tr>
<tr>
<td>7) 압축공기 공급장치</td>
<td>○</td>
</tr>
<tr>
<td>8) 활용방지</td>
<td>○</td>
</tr>
<tr>
<td>4.5 추진장치</td>
<td></td>
</tr>
<tr>
<td>1) 설계 요구사항</td>
<td>○</td>
</tr>
<tr>
<td>2) 인버터/컨버터</td>
<td>○</td>
</tr>
<tr>
<td>3) 간인전동기</td>
<td>○</td>
</tr>
<tr>
<td>4) 보호기능</td>
<td>○</td>
</tr>
<tr>
<td>5) 접전장치</td>
<td>○</td>
</tr>
<tr>
<td>6) 비상문전</td>
<td>○</td>
</tr>
<tr>
<td>7) 피뢰기</td>
<td>○</td>
</tr>
<tr>
<td>8) 주류조</td>
<td>○</td>
</tr>
<tr>
<td>9) 차단기</td>
<td>○</td>
</tr>
<tr>
<td>10) 필터리액터</td>
<td>○</td>
</tr>
<tr>
<td>11) 교·직절환기</td>
<td>○</td>
</tr>
<tr>
<td>12) 주변압기</td>
<td>○</td>
</tr>
<tr>
<td>13) 비상접지스위치</td>
<td>○</td>
</tr>
<tr>
<td>4.6 보조전원장치</td>
<td></td>
</tr>
<tr>
<td>1) 보조전원장치 설계</td>
<td>○</td>
</tr>
<tr>
<td>2) 보호기능</td>
<td>○</td>
</tr>
<tr>
<td>3) 연장급전</td>
<td>○</td>
</tr>
<tr>
<td>4) 유도장애의 역제</td>
<td>○</td>
</tr>
<tr>
<td>5) 보조전원장치용 인버터</td>
<td>○</td>
</tr>
<tr>
<td>6) 충전지</td>
<td>○</td>
</tr>
<tr>
<td>4.7 차상신호장치</td>
<td></td>
</tr>
<tr>
<td>1) 시스템 일반</td>
<td>○</td>
</tr>
<tr>
<td>기술기준 항목</td>
<td>필수 요구사항</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>안전</td>
</tr>
<tr>
<td>2) 열차자동정지장치(ATS)</td>
<td>○</td>
</tr>
<tr>
<td>3) 열차자동방호장치(ATP)</td>
<td>○</td>
</tr>
<tr>
<td>4) 열차자동운전장치(ATO)</td>
<td>○</td>
</tr>
</tbody>
</table>

4.8 종합제어
1) 종합제어장치의 설계 | ○ | ○ | ○ | | |
2) 운행상태 확인장치 | ○ | ○ | ○ | | |
3) 열차운행기능 | ○ | ○ | ○ | | |
4) 출입문 제어 | ○ | ○ | ○ | | |
5) 무인운전 | ○ | ○ | ○ | | |

4.9 연결장치
1) 연결기 | ○ | ○ | ○ | | |
2) 통로 연결장치 | ○ | ○ | ○ | | |
[별표 3] 도시철도차량(모노레일경전철)의 축중 및 총중량 세부기준

1. 도시철도차량(모노레일경전철)의 총중량은 정상적인 운전이 가능한 상태의 철도차량 자체만의 중량(공차중량, W0)과 승객·기관사·승무원 및 부가중량(최대용량 기준)의 중량 등을 합한 중량(안차중량, W2)으로 하되, 다음의 축중의 기준에 적합하여야 한다.

2. 축중 등 정차상태에서 철도차량의 축중 등은 아래 표의 기준을 만족하여야 한다.

3. 전용철도 구간에서만 운행하는 철도차량의 경우에는 적용하지 않는다.

<table>
<thead>
<tr>
<th>차량유형</th>
<th>축중량[ton]</th>
<th>총중량[ton]</th>
</tr>
</thead>
<tbody>
<tr>
<td>도시철도차량 (모노레일경전철)</td>
<td>≤13.5</td>
<td>총중량은 신청자가 제시하고, 차량발주자가 동의하는 기준</td>
</tr>
</tbody>
</table>

4. 참고규격
 1) KS C IEC 61133: 전기 견인 및 엔진 견인 철도 차량의 사용 전 완성차 시험 방법
 2) EN 15663: Railway applications. Definition of vehicle reference masses
 3) KS R 9142: 철도 차량의 무게 측정 방법
[별표 4] 도시철도차량(모노레일경전철)의 제원산정 세부기준

1. 적용범위
철도차량 구조의 차수·면적·용적 및 자중 등 철도차량의 제원산정은 다른 법령에서 정하는 것을 제외하고는 이 기준에서 정하는 바에 의한다.

2. 단위
단위의 표기 및 환산방법은 다음 각 호와 같다.
1) 길이, 폭, 높이는 밀리미터(mm)로 표시하며 소수점 이하는 반올림한다.
2) 면적은 제곱미터(m²)로 표시하며 소수점 1자리 미만은 반올림한다.
3) 용적은 세제곱미터(m³)로 표시하며 소수점 1자리 미만은 반올림한다.
4) 중량은 톤(Ton)으로 표시하며 소수점 1자리 미만은 반올림한다.

3. 차수의 산정
1) 철도차량의 차수는 잔류적재물이 없는, 기준차수[새로이 제작되는 경우 또는 구조가 변경되어 제작되는 경우(부분품의 개량을 포함) 설계도 또는 제작설명서에 명기된 차수를 말한다. 이하 같다]대로 완전정비(연료고 급수는 제외한다)된 상태(이하 공차상태라 한다)에서 산정한다.
2) 철도차량 길이(Length, 영문약칭은 “L”로 표기한다)의 산정은 다음 각 호와 같다.
 (1) 최대길이는 연결기 연결상태(완충기에 헤어지지 않아야 할 때)에서 전후 양 연결면(너클 안쪽 면)간의 거리로 한다.
 (2) 차체외부길이는 차체의 길이방향 양쪽 끝판 바깥 면 사이의 수평거리로 하며, 양쪽 끝판이 없는 철도차량에서는 양끝 돌출부(end sill) 바깥 면 사이의 수평거리로 한다.
 (3) 차체내부길이는 내장판이 있는 철도차량의 경우 차체의 길이방향 양쪽 끝의 내장판 안쪽 면간의 거리로 하며, 내장판이 없는 경우에는 차체의 길이방향 양쪽 끝판 안쪽 면간의 거리로 한다. 다만, 벽이 굽곡된 구조일 경우 작은 폭 차수를 적용한다.
3) 철도차량 폭(Width, 영문약칭은 “W”로 표기한다)의 산정은 다음 각 호와 같다.
 (1) 최대 폭은 옆판(side plate) 바깥 폭의 최대 돌출부간의 거리로 한다. 다만, 좌우 돌출부의 거리가 다른 때에는 양쪽 돌출한 폭에서 차체중심선까지 측정한 길이의 2배로 한다.
 (2) 외부 폭은 옆판의 바깥 면간 수평거리로 하며, 옆판이 없는 철도차량은 사이드실(side sill) 바깥 폭의 바닥판 바깥 면 사이의 수평거리로 한다.
 (3) 내부 폭은 내장판이 있는 철도차량의 경우에는 옆판 쪽의 내장판 안쪽 면간 거리로 하며, 내장판이 없는 경우에는 옆판 안쪽 면간 거리로 한다.
4) 철도차량 높이(Height, 영문약칭은 “H”로 표기한다)의 산정은 다음 각 호와 같다.
 (1) 최대높이는 주행범 위면으로부터 철도차량 최상부(철도차량의 상부에 집전장치가 설치된 경우에는 부속 부분품을 포함하여 집전장치의 접선 상태)까지의 높이로 한다.
 (2) 차체상면높이는 주행범 위면에서 철도차량의 바닥판 위면까지의 높이로 한다.
 (3) 차체내부높이는 바닥판 위면으로부터 중앙부 지붕골조 아래쪽 부분까지의 거리로 하며, 천장이 있는 것은 바닥판 위면에서 천장판의 표면 최고부까지의 높이로 한다.
5) 고정축거(rigid wheel base)는 중심좌표가 가능한 주행장치에 부착된 1군의 고정축 중 맨 앞부분의 차축과 맨 뒷부분의 차축중심간 수평거리를 기준으로 산정한다.
6) 전체 축간거리(total wheel base)는 철도차량 1량의 앞뒤 양 끝에 있는 차축간의 수평 중심거리 를 기준으로 산정한다.
7) 대차중심간 거리(distance between centers of bogies)는 철도차량 1량의 앞부분 대차와 뒷부분 대차의 대차 중심간 수평거리를 기준으로 산정한다.
8) 철도차량의 바닥면적은 차체 내부의 길이와 폭을 곱한 것으로 한다. 승객이 탑승하는 동력 차부수차(제어차 포함) 등의 철도차량(이하 “승객차량”이라 한다)에 있어 승객 1인당 접 유면적은 객실바닥면의 내부면적을 승객정원으로 나눈 값으로 한다.

4. 용적의 산정
용적은 바닥면적에 차체내부높이를 곱한 값으로 한다. 탱크차, 호퍼차 등 특수한 형상을 가진 철도차량은 내부 부피를 계산한 값으로 한다.

5. 자중의 산정
1) 철도차량 자중의 산정을 위한 계중은 기준처수대로 관리된 공차상태에서 측정한다.
2) 새로이 제작되는 철도차량의 자중은 5량 이상(제작수량이 10량 미만인 경우는 제작수량의 50% 이상)을 계중하여 표준자중(동일한 설계도 또는 제작설명서에 의하여 제작된 철도차량 에서 일정량을 표본 조사하여, 그 평균치로 산정한 중량을 말한다. 이하 같다)으로 산정한다. 이 경우 표준자중은 기준처수의 ±5 % 이내로 산정되어야 한다.
3) 구조가 변경되어 제작되는(부품의 개량을 포함) 철도차량 중 정해진 표준자중에서 5% 이상의 차이가 발생될 요인이 있을 때에는 5량 이상(제작수량이 10량 미만인 경우는 제작수량의 50% 이상)을 계중하여 표준자중을 산정한다.
4) 철도차량의 자중은 이상 유무를 확인하고 관리되어야 한다.

6. 속도의 산정
열차운전속도는 선로와 차량의 구조, 운전취급조건과 해당운행구간의 선로상황 등을 고려하여 결정하고, 설계최고속도(design maximum speed)는 차량을 설계할 때 추정하는 해당운행구간에 서의 최고속도로 한다.
[별표 5] 도시철도차량(모노레일경전철)의 풍력 전복방지 세부기준

1. 적용범위
철도차량이 기후변화에 의한 횡풍과 열차 교행에 의한 열차풍을 받을 경우에 대한 전복방지기준을 규정한다.

2. 철도차량 전복 유형 분류
1) 곡선 통과중 외측 열차가 횡풍과 교행 열차풍을 받는 경우
2) 평탄선로 주행중 횡풍과 교행 열차풍을 받는 경우
3) 곡선에 내측 열차가 정차한 상태에서 횡풍과 교행 열차풍을 받는 경우

3. 철도차량 전복 방지 기준
1) 차량에 작용하는 외력의 합력의 작용점은 최소한 차륜-주행빔 접촉점을 넘지 않아야 한다. 즉, 차량중심선으로부터 합력의 작용거리(아래 그림에서 b)는 차량중심선으로부터 차륜-주행빔 접촉점까지의 거리보다 작아야 한다.
2) 합력의 작용점 거리는 차량 중량, 차량 중심높이, 차량 측면 면적, 궤간, 곡선 반경, 캐트, 곡선 통과속도, 풍압력으로 구하며, 안전율은 합력의 작용점 거리와 차량 중심선으로부터 차륜-주행빔 접촉점까지의 거리를 고려하여 산정한다.
3) 유형별 합력작용점 산정기준
 (1) 곡선 통과중 외측 열차가 횡풍과 교행 열차풍을 받는 경우
 \[b = H \left(\frac{m V_i^2}{r} + \frac{1}{2} \rho C_d U_\infty^2 + p_i \right) A \frac{c}{G} \]
 (2) 평탄선로를 주행중에 횡풍과 교행 열차풍을 받는 경우
 \[b = H \left(\frac{1}{2} \rho C_d U_\infty^2 + p_i \right) A \]
 (3) 곡선에 내측열차가 정차한 상태에서 횡풍과 교행 열차풍을 받는 경우
 \[b = H \frac{c}{G} + \frac{1}{2} \rho C_d U_\infty^2 + p_i \frac{A}{mg} \]
그림에서,
A: 차량 측면 면적 (㎡)
c: 캔트 높이 (m)
C_d: 향력계수
C_w: 돌풍계(선로 및 지형조건에 따름, 일반적으로 $C_w \leq 1.0$)
G: 궤간 (m)
g: 중력가속도 (m/s²)
H: 차량 중심 높이 (m)
m: 차량 중량 (kg)
p: 전(全) 풍압 ($p_s + p_t$) (Pa)
p_s: 횡풍에 의한 풍압 (Pa)
p_t: 주행에 의한 열차풍압 (Pa)
r: 곡선 반경 (m)
s: 안전율 (일반적으로 $s = \frac{G}{2b} > 1.0$)
V_t: 열차속도 (m/s)
U_∞: 원방의 횡풍 속도 (m/s)
ρ: 공기밀도 (kg/㎡)
[별표 6] 도시철도차량(모노레일경전철) 충돌안전도 평가방법

1. 적용범위
 1) 신규로 제작·조립·수입되는 도시철도차량(모노레일경전철)의 충돌안전 성능평가에 적용된다.
 2) 도시철도차량(모노레일경전철)은 전용노선에서만 운행되며 건널목이 없는 운행조건에 한한다.

2. 표준충돌사고각본

 [표 1] 표준충돌사고각본, 피충돌체 및 충돌속도

<table>
<thead>
<tr>
<th>표준충돌 사고각본</th>
<th>피충돌체</th>
<th>운행환경에 따른 적용여부</th>
<th>충돌속도 (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>정면충돌</td>
<td>충돌열차와 동일</td>
<td>모두 적용</td>
<td>15</td>
</tr>
</tbody>
</table>

1) 정면 충돌사고각본
 (1) 개요
 열차와 열차 사이의 충돌 및 추돌을 모사하는 사고각본으로 열차충돌사고 중 가장 심각도가 높음
 (2) 충돌조건
 가. 피충돌체 : 충돌체와 동일한 편성의 정지된 열차
 나. 선로조건 : 직선평탄선로
 다. 제동상태 : 제동 미체결
 라. 충돌속도 : 차량분류에 따라 [표 1]과 같음

2) 표준충돌사고각본의 예외적 적용
 (1) 운행노선의 특성상 표준충돌사고각본 중 일부가 발생할 수 없거나 해당 위험도가 허용가능한 수준으로 매우 낮은 것이 증명된 경우에는 해당 충돌사고각본을 제외할 수 있다.
 (2) 표준충돌사고각본이외에 시설물과의 충돌, 피충돌체와의 측면충돌 등의 충돌 위험도가 심각하게 존재하는 운행노선의 경우에는 위험도 분석 결과에 따라 추가적인 충돌사고각본을 고려할 수 있다.

3. 충돌안전 성능평가
 충돌안전 성능평가의 방법, 평가항목 및 판단기준은 EN15227을 따른다. 단, 차량이 궤도에 상하방향으로 구속되어 상승이 억제된 경우 타고오름 현상 방지에 관한 평가를 제외할 수 있다.

4. 참고규격
 1) EN15227: Railway applications. Crashworthiness requirements for railway vehicle bodies
 2) EN12663-1: Railway applications. Structural requirements of railway vehicle bodies. Locomotives and passenger rolling stock (and alternative method for freight wagons)
 3) EN 15663: Railway applications. Definition of vehicle reference masses

[별표 6-2] 도시철도차량(모노레일경전철)의 열차내 비상통신장치 설치 세부기준

1. 적용범위
도시철도차량(모노레일경전철) 객실 내부에 설치하는 비상인터폰 설치 요구조건에 대해 규정한다.

2. 설치조건
1) 객실 내부에 비상인터폰을 설치하여야 하며 객실당 2곳 설치한다.
2) 승객용 출입문 측면 또는 통로문 출입문 우측에 설치한다. 다만 제어차의 경우 객실쪽 운전실 벽면에 설치할 수 있다.
3) 승객용 출입문 측면에 설치하는 경우 출입문 비상개방장치의 반대쪽에 설치할 수 있다.
4) 비상인터폰 부근에는 비상인터폰 사용방법을 설명하는 명판이 설치되어야 한다.
5) 비상인터폰 명판은 비상시 승객이 쉽게 알아볼수 있도록 하여야 한다.
6) 비상인터폰은 비상시 승객이 쉽게 조작할수 있도록 하여야 한다.
7) 비상인터폰 설치위치는 다음 그림을 참조한다.

![비상인터폰 설치 위치](image)
[별표 7] 도시철도차량(모노레일경전철)의 구조체 세부기준

1. 적용범위
도시철도차량(모노레일경전철) 구조체의 설계 및 입증을 위한 조건과 방법을 정한다.

2. 구조체의 설계 및 입증
1) 도시철도차량(모노레일경전철)의 구조체 설계 및 입증은 EN 12663-1(Railway application - Structural requirements of railway vehicle bodies)을 참고할 수 있다.
 (1) 구조체 요구사항 : 제5장 (Structural requirements)
 (2) 하중조건 : 제6장 (Design load cases)
 (3) 허용응력 : 제7장 (Permissible stresses for materials)
 (4) 하중시험 : 제8장 (Requirements of strength demonstration tests)
 (5) 입증방법 : 제9장 (Validation programme)
2) 도시철도차량(모노레일경전철)의 설계특성에 따라 EN 12663-1 외에도 KS R 9223, KS R 9228, EN 12663, EN 12663-2, EN 15085-1, EN 15085-2, EN 15085-3, EN 15085-4, EN 15085-5, KS R 9151, KS R 9152, KS R 9204, KS R 9205 등을 선택적으로 참고할 수 있다.

3. 구조체 하중시험
1) 하중시험을 하기 위해서는 차체를 올려놓고 하중종류별로 하중작용점에 하중을 가할 수 있는 하중시험대(test rig) 및 지그(jig)를 갖추어야 한다.
2) 시험대상 구조체에 1축 및 3축 스트레인게이지(strain gauge)를 음력 집중점과 부하가 많은 지점 등에 설치한다. 게이지의 측정위치를 결정하기 위해 반드시 구조해석 등의 과학적 방법을 사용하여야 한다.
3) 시험 전 및 시험 중 아래 값을 측정 기록한다.
 (1) 출입문과 창문의 개구부 코너 등을 비롯한 과다 변형 예상 지점의 변형율
 (2) 차체 중앙부의 처짐
 (3) 잔류 처짐량
 (4) 출입문과 창문 개구부를 비롯한 관심 위치의 잔류 변형량
4) 각종 하중시험 전에 구조체 전체의 안정화를 위한 예비하중을 가한다.
5) 하중을 가할 때에는 최대하중의 75%까지 부하를 가한 후, 그 단계에서 최대하중까지 가하는 시험을 최소한 2회 하여야 하고 최종적으로 가한 최대 하중상태에서 측정된 값들로 성능평가를 하여야 한다.
6) 연결기 높이, 창문을 높이, 캔트레일 높이에 가해지는 압축하중들은 하중을 가할 때 해당하는 구조체 부재에 집중응력이 발생하지 않고 하중을 골고루 분포시키기 위해 필요한 지그 및 장치를 이용하여야 한다. 또한, 압축하중에 대한 반력이 하중 작용점과 수평면에 발생하도록 조치하여야 한다.
7) 수직하중 부하 및 운행조건하중 부하 시 전체 하중이 바닥에 골고루 분포되도록 중량물이나 적절한 장치를 이용하여야 하며, 장치의 무게도 부하하중에 포함되도록 계산하여야 한다.
8) 바닥 면에 골고루 분포되는 중량물의 무게는 아래와 같이 결정된다.
 \[\text{하중무게} = \frac{\text{수직하중}}{g} - \text{구조체의 무게} \]
 여기서 \(g \)는 9.81m/\(s^2 \)의 중력가속도이다.
9) 수직하중시험 및 운행조건하중시험의 정적응력은 하중 부하 시 측정되는 응력들로부터 아래의 계수를 곱하여 얻어질 수 있다.

\[1 + \left(\frac{\text{구조체 무게}}{\text{하중무게}} \right) \]

10) 각 차종별로 연결기 높이에서 가해진 순수 압축하중 시험 시 구조체의 중앙부에 아래쪽 측침이 발생하는 경우에는, 압축하중과 수직하중이 동시에 가해지는 조합하중시험을 추가하여야 하며, 그 외에는 인정하중과 수직하중을 동시에 가하는 조합하중시험을 추가하여야 한다.

4. 평가기준

1) 판정기준

(1) 압축하중 및 수직하중에 대한 안전계수

\[\sigma_{\text{perm}} = \frac{1}{S_1} \sigma_y \]

여기서 \(\sigma_{\text{perm}} \)는 허용응력, \(S_1 \)는 압축 및 수직하중에 대한 안전계수, \(\sigma_y \)는 재료의 항복응력이다.

(2) 운행조건 하중에 대한 허용응력은 안전계수와 피로한도에 의해 아래와 같이 결정된다.

\[\sigma_{\text{perm}} = \frac{1}{S_2} \sigma_d \]

여기서 \(\sigma_d \)는 재료의 피로한도이며 \(S_2 \)는 운행조건 하중에 대한 안전계수이다.

(3) 진동시험은 합부의 판정 없이 고유진동수를 측정하여 제시하도록 한다.

(4) 강재(steel)의 경우는 허용응력이 파단한계(breaking limit)에 의하여 결정될 수 있다.

2) 안전계수의 산정 : EN 12663-1의 제5장(Structural requirements)과 다음 표를 참고한다.

(1) 압축하중 및 수직하중에 대한 안전계수(S1)

<table>
<thead>
<tr>
<th>구분</th>
<th>안전계수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>파단(fracture) 일 경우</td>
<td>안전계수 (S_1 = 1.5)로 정한다.</td>
<td>강재(steel)의 경우</td>
</tr>
<tr>
<td>항복응력(yield stress) 일 경우</td>
<td>비용접 구조 및 결합부</td>
<td>(S_1 = 1.0)</td>
</tr>
<tr>
<td></td>
<td>용접된 구조 및 결합부</td>
<td>(S_1 = 1.1)</td>
</tr>
</tbody>
</table>

(2) 운행조건 하중에 대한 안전계수(S2)

<table>
<thead>
<tr>
<th>구분</th>
<th>안전계수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>파단(fracture) 일 경우</td>
<td>안전계수 (S_2 = 2.2)로 정한다.</td>
<td>강재(steel)의 경우</td>
</tr>
<tr>
<td>피로응력(fatigue stress) 일 경우</td>
<td>비용접 구조 및 결합부</td>
<td>(S_2 = 1.5)</td>
</tr>
<tr>
<td></td>
<td>용접된 구조 및 결합부</td>
<td>(S_2 = 1.65)</td>
</tr>
</tbody>
</table>
[별표 8] 도시철도차량(모노레일경전철)의 구조체 전복강도 세부기준

1. 적용범위
승객이 탑승하고 있는 철도차량이 전복사고가 발생할 경우 승객을 보호하기 위한 최소한의 구조체 강도를 규정한다.

2. 용어정의
1) 측면전복
철도차량의 측면이 바닥에 닿도록 넘어진 상태
2) 지붕전복
철도차량의 지붕이 바닥에 닿도록 넘어진 상태

3. 하중조건
1) 측면전복
공차상태의 차량이 측면전복 시 차량무게에 의한 자중
2) 지붕전복
공차상태의 차량이 지붕전복 시 차량무게에 의한 자중

4. 판단기준
1) 측면전복
측면전복 하중조건에서 차량은 측면 구조틀의 상부(캔트레일)와 하부(사이드실)에서 균일하게 지지되도록 설계되어야 한다. 탑승공간 구조부재의 허용응력은 재질의 항복강도 이내로 한다. 구조체 외판의 국부적인 변형은 이로 인한 탑승공간을 침범하지 않는 경우에만 허용된다.
2) 지붕전복
지붕전복 하중조건에서 구조체의 손상은 지붕외판과 지붕구조에 제한되도록 설계되어야 한다. 이러한 상태에서 지붕외판과 지붕구조를 제외한 탑승공간 구조부재의 허용응력은 재질의 항복강도 이내로 한다. 지붕외판과 지붕구조의 변형은 측면구조틀과 단부구조틀에 의해 차량이 직접 지지되도록 하는데 필요한 한도까지 허용된다.
[별표 9] 승객용 출입문 강도 세부기준

1. 적용범위
 철도차량 승객용 출입문의 강도 요구조건에 대해 규정한다.

2. 하중조건
 1) 승객용 출입문
 (1) 차량 내부에서 출입문 표면 0.1m×0.1m 면적을 갖는 임의의 영역에 수직으로 가해지는 2.5kN의 하중
 (2) 차량 외부에서 출입문 표면 전체에 가해지는 2.5kPa의 압력
 (3) 차량 내부에서 출입문 표면 전체에 2.5kPa의 압력과 0.1m×0.1m 면적을 갖는 임의의 영역에 0.8kN의 수직하중이 동시에 가해지는 조합하중
 2) 승객용 출입문 손잡이 (손잡이가 있는 경우)
 아래쪽 수직방향으로 1.7kN의 하중

3. 판단기준
 승객용 출입문과 손잡이는 “2항”의 하중조건에서 영구변형이나 파손이 발생하지 않아야 하며, 하중이 제거된 후에도 정상적으로 작동되어야 한다. 다만, 승객용 출입문은 3가지 조건 중 1가지 이상을 만족하는 경우 강도 요구조건을 만족하는 것으로 본다.
[별표 9-2] 승객용 출입문의 비상개방장치 설치 세부기준

1. 적용범위

도시철도차량(모노레일경전철) 객실 내부의 승객용 출입문에 설치되는 비상개방장치 설치 요구조건에 대해 규정한다.

2. 설치조건

1) 각각의 출입문 한쪽 측면에 비상개방장치를 설치하여야 한다.
2) 비상개방장치 부근에는 비상개방장치를 설명하는 명판이 설치되어야 한다.
3) 비상개방장치 명판은 비상시 승객이 쉽게 알아볼수 있도록 하여야 한다.
4) 비상개방장치는 비상시 승객이 쉽게 조작할 수 있도록 하여야 한다.
5) 비상개방장치 색상 및 형태는 EN14752 4.3.2을 참고한다.

다만, 공압식 출입문의 경우에는 비상개방장치를 의자밑에 설치 할 수 있다.
6) 비상개방장치 설치위치는 다음 그림을 참고하여 설치한다.
7) 모노레일 및 도시형 자기부상열차 등 노선에 대피로가 없는 경우에는 잠금장치 등을 설치 할 수 있다.
[별표 10] 객실의자 안전 세부기준

1. 적용범위
철도차량용 의자의 감도 요구조건에 대해 규정한다.

2. 하중조건

1) 횡방향 의자
(1) 등받이 최상단 중심부의 가로 380 mm, 세로 380 mm 영역에 ±1500 N의 하중을 차량 길이방향으로 부과한다. 복열의자인 경우 하중을 각 좌석에 같은 방향으로 동시에 적용한다.
(2) 의자쿠션 상단 중심부의 가로 380 mm, 세로 220 mm의 영역에 1000N의 수직하중을 아랫방향으로 부과한다. 복열의자인 경우 하중을 각 좌석에 동시에 적용한다.
(3) 팔걸이가 설치된 경우 아래와 같은 하중을 각각 부과한다.
 가. 팔걸이의 끝단에서 수평방향으로 ± 750 N
 나. 팔걸이의 끝단에서 아래쪽 수직방향으로 750 N
2) 종방향 의자
(1) 의자쿠션 중앙부의 가로 380 mm, 세로 220 mm의 영역에 1000N의 수직하중을 아랫방향으로 부과한다. 복열의자인 경우 하중을 각 좌석에 동시에 적용한다.
(2) 팔걸이가 설치된 경우 횡방향 의자의 (3)항의 하중을 각각 부과한다.
3) 뒷좌석 승객 충격
열차전행방향으로 뒤편에 좌석이 있는 횡방향 의자의 경우, 충돌사고 감속도가 작용할 때 뒷좌석에 앉아 있는 승객이 의자 등받이에 충돌하여 발생되는 하중. 이때 등받이에 충돌하는 승객의 신체조건은 「자동차안전기준시행세칙」에서 정한 인체모형 특성 중 95% 성인남성을 기준으로 하고, 적용되는 충돌사고 감속도의 하한과 상한은 아래 그림과 같이 정의된다.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>110</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>150</td>
</tr>
<tr>
<td>G</td>
<td>210</td>
</tr>
</tbody>
</table>

3. 판단기준
의자와 고정부는 “2의 가 및 나” 항의 하중조건에서 영구변형이나 파손이 발생하지 않아야 하고, “2의 다” 항 하중조건에서 차체로부터 분리되지 않아야 한다.
철도차량기술기준

[별표 11] 유리창 안전 세부기준

1. 적용범위
도시철도차량(모노레일경전철) 운전실의 전면유리창, 측면유리창, 철도차량간 통로유리창 및 기타 설비에 설치되는 유리창(이하 "내부유리창"이라 한다)에 대한 안전기준을 규정한다.

2. 참고규격
1) KS R ISO 3538 : 도로차량 - 안전유리 재료 - 광학적 상태량 시험방법
2) ECE R 43 : The approval of safety glazing materials and their installation on vehicles
3) EN 15152 : Railway application - Front windscreens for train cabs
4) UIC 566 : Loading of coach bodies and their components
5) GM/RT 2100

3. 안전 요구조건
1) 운전실 전면유리창 안전 요구조건
 (1) 전면유리창은 EN 15152(4.2.7항) 또는 제작자 제시 시험방법을 적용한 충돌하중에 충분히 견디어야 한다.
 (2) 전면유리창의 내측에서 파손되는 파편이 기관사 또는 승무원에게 상해를 입히지 않아야 한다.
2) 측면유리창 요구조건
 (1) 유리창은 강화유리 또는 동등이상 재질이어야 한다.
 (2) 유리창은 2.5kPa 압력과 0.1m x 0.1m 면적에 가해지는 0.8kN 의 복합 하중조건에 견디어야 한다.
 (3) 복층유리가 사용된 경우, 하중조건은 제작자가 제안할 수 있다.
3) 내부창유리 요구조건
 (1) 유리창은 강화유리 또는 동등이상 재질이어야 한다.
 (2) 강화유리인 경우 KS L 2002 또는 동등이상 규격의 요구조건을 만족해야 한다.
 (3) 강화유리가 아닌 경우, 유리창은 2.5 kPa 압력과 0.1 m x 0.1 m 면적에 가해지는 0.8 kN의 복합 하중 조건 또는 0.1 m x 0.1 m 면적에 가해지는 2.5 kN의 하중조건에 견디어야 한다.
4) 특수 하중시험 요구조건
 (1) 극한 온도 변화에 대한 시험(운전실 전면유리창 및 측면유리창)
 가. 유리창을 조립한 창문을 -5°C에서에서 2시간 방치나. 상기조건에서 유리창 외부로부터 + 60°C의 온을 단위면적(1㎡)당 2 리터/분으로 살수했을 때 아래 항목을 만족해야 한다.
 (가) 유리 및 창틀에 크랙이 없어야 한다.
 (나) 실링이 손상되지 않아야 한다.
 (다) 복층유리인 경우 결로점이 - 60°C 보다 낮아야 한다.
5) 광학적 특성
 (1) 전면유리창은 기관사에게 혼돈이나 집중의 방해를 일으킬 수 있는 2차 상을 발생시켜서는 안되며, EN 15152의 2차 상 분리시험에 따른 2차 상 분리가 1차 시각영역의 아크
각도는 15분, 2차 시각영역의 아크 각도는 25분을 초과하지 않아야 한다.
(2) 전면유리창은 EN 15152의 광학적 왜곡시험에 따른 광학적 왜곡이 1차 시각영역 아크
각도는 최대 2분, 2차 시각영역 아크 각도는 최대 6분을 초과하지 않아야 한다.
(3) 전면유리창은 EN 15152의 헤이즈시험에 따른 헤이즈 최대값이 2.5 %를 초과하지 않아야
한다.
(4) 전면유리창은 EN 15152의 투과도시험에 따른 투과도를 측정하여 차량에 설치된 위치에
서 시각적인 투과율이 65 % 이상이어야 한다.
(5) 전면유리창은 기관사가 신호를 읽는데 오류가 없도록 색에 영향을 미쳐서는 안되며,
EN 15152의 색도시험에 따른 색도를 특정하여 신호색에 대한 색변이가 없어야 한다.

4. 판단기준
"2" 항의 요구조건들은 설계과정에서 시험으로 검증되어야 하며, 초도품의 형식시험을 실시
하여 요구조건에 만족하여야 한다.
[별표 12] 열차비상용품 세부기준

<table>
<thead>
<tr>
<th>항 목</th>
<th>최소수량</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>비상공구함</td>
<td>1세트</td>
<td></td>
</tr>
<tr>
<td>차륜막이</td>
<td>2개</td>
<td></td>
</tr>
<tr>
<td>에비공기호스</td>
<td>각 1개</td>
<td>동력차용, 부수차용</td>
</tr>
<tr>
<td>손전등</td>
<td>1개</td>
<td>승무원 휴대품/적색 및 녹색</td>
</tr>
<tr>
<td>들것</td>
<td>1개</td>
<td>운영기관의 요구사항에 따른다</td>
</tr>
<tr>
<td>응급세트</td>
<td>1세트</td>
<td>승무원 휴대품</td>
</tr>
<tr>
<td>선로전환기 수동핸들(S-2key 포함)</td>
<td>1개</td>
<td>운영기관의 요구사항에 따른다</td>
</tr>
<tr>
<td>AED (자동제세동기)</td>
<td>1개</td>
<td></td>
</tr>
<tr>
<td>안전 지시봉</td>
<td>1개</td>
<td>운영기관의 요구사항에 따른다</td>
</tr>
<tr>
<td>안전 조끼</td>
<td>1개</td>
<td>운영기관의 요구사항에 따른다</td>
</tr>
</tbody>
</table>
[별표 13] 도시철도차량(모노레일경전철)의 차체지지장치 세부기준

1. 적용범위
 도시철도차량(모노레일경전철)의 주행장치(대차)와 차체를 연결하여 지지하는 장치(차체지지장치)의 설계 및 입증을 위한 조건과 방법을 정한다.

2. 차체지지장치의 설계 및 입증
 1) 도시철도차량(모노레일경전철) 차량의 차체지지장치 설계 및 입증은 EN 12663-1을 참고할 수 있다.
 (1) 구조체 요구사항 : 제5장 (Structural requirements)
 (2) 하중조건 : 제6장 (Design load cases)
 (3) 허용응력 : 제7장 (Permissible stresses for materials)
 (4) 하중시험 : 제8장 (Requirements of strength demonstration tests)
 (5) 입증방법 : 제9장 (Validation programme)
 2) 도시철도차량(모노레일경전철) 차량의 설계특성에 따라 EN 12663-1 외에도 KS R 9223, KS R 9228, EN 15085-1, EN 15085-2, EN 15085-3, EN 15085-3, EN 15085-4, EN 15085-5 등을 선택적으로 참고할 수 있다.

3. 판단기준
 주행장치와 차체의 연결부위는 “2” 항의 하중조건에서 영구변형이나 파손이 발생하지 않아야 하고 하중이 제거된 후에도 정상적으로 작동되어야 한다.
[별표 14] 부품시험의 대상항목

<table>
<thead>
<tr>
<th>연번</th>
<th>시험규격</th>
<th>시험대상</th>
<th>세부 시험항목</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>내장판 화재시험</td>
<td>내장판</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>의자 화재시험</td>
<td>의자</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>통로연결막 화재시험</td>
<td>통로연결막 (벨로우즈)</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>바닥재 화재시험</td>
<td>바닥재 (카펫 등 포함)</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>단열재 화재시험</td>
<td>단열재</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>전선 화재시험</td>
<td>전선류</td>
<td>수직화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>차체외장</td>
<td>차체외장판 도막 필름</td>
<td>최대 평균열방출률</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화염전파</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연기밀도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가스유독성</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>내화성능 (방화벽)</td>
<td>차체구조 (바닥부, 지붕, 단부)</td>
<td>내화성능</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>전자제어기기시험</td>
<td>공기조화장치제어기 중발기/냉각기 배용 인버터제어기</td>
<td>외관구조 및 치수검사</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>화재감지장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>승강문제어기</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>장애인화장장치종</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>구원제동장치설치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동블렌딩제어장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동진원제어장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방송장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>열차운전장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>속도운전장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>속도제어장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>해치모듈 및 제어기</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>절연시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전원변동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>성능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전자파적합성시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>온도시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>진동, 충격시험</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부시험항목</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>유리창시험</td>
<td>전면유리창</td>
<td>충돌시험
박리시험
극한온도변화시험
2차상분리시험
광학적왜곡시험
헤이즈시험
투과도시험
색도시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>측면유리창</td>
<td>극한온도변화시험
압력과수직집중하중복합시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>내부유리창</td>
<td>수직집중하중시험
압력과수직집중하중복합시험</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>의자강도시험</td>
<td>객실의자</td>
<td>동반이하중시험
안장하중시험
팔걸이하중시험</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부시험항목</td>
<td>비고</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>구조체 하중시험</td>
<td>차체 구조체</td>
<td>수직하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>압축하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>인장하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>조합하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>운행하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>리프팅/잭킹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3점지지시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>고유진동수 측정시험 ((x,y,z))</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>대차시험</td>
<td>대차</td>
<td>환상대차검사</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>대차하중시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(정하중시험)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(피로하중시험)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>차체지지장치시험</td>
<td>차체지지장치</td>
<td>하중시험</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>접전장치시험</td>
<td>접전장치</td>
<td>윤안검사</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>첫수검사</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>중량측정</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>기능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전기연속시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>절연저항시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>내전압시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공기누설시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>진동 및 충격시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>환경시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전자파시험</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>추진제어장치시험</td>
<td>주진력변환장치</td>
<td>외관구조검사</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>절연저항시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>내전압시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>보호감출기능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제어기능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>냉각시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>경부하시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>소음시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>온도상승시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>효율시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공급과전압과 과도에너지시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>안전요구시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>진동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>진자의회복성시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방수시험</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>건전동기</td>
<td>외관구조검사</td>
<td>측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>온도상승시험</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부 시험항목</td>
<td>비고</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>보조전원장치시험</td>
<td>보조전원 장치</td>
<td>특성시험</td>
<td>온도상승시험 특성시험 보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>과속시험</td>
<td>특성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>소음시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>절연저항시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>내전압시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>진동시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>저항측정</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>통전내력시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방수시험</td>
<td>보호시스템시험 환경시험 유도장애시험 신뢰성시험</td>
</tr>
<tr>
<td>7</td>
<td>차상신호장치시험</td>
<td>차상신호장치</td>
<td>특성시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험 고온·고습시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>보호시스템시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>환경시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>유도장애시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>신뢰성시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>조합시험</td>
<td>외관구조 및 처수검사 전원변동시험 저온시험 고온시험</td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부 시험항목</td>
<td>비고</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>8</td>
<td>종합제어장치시험</td>
<td>종합제어장치</td>
<td>전자파적합성시험
운도시험
진동 및 충격시험
기능 및 조합시험</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>제동장치시험</td>
<td>제동제어장치</td>
<td>공기누설시험
성능시험
절연저항시험
내전압시험
진동시험
충격시험
운도시험</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>냉난방·환기장치시험</td>
<td>냉난방환기장치</td>
<td>전원전압변동시험
절연저항시험
내전압시험
냉방능력시험
난방능력시험
소음시험
냉매압력 및 누설시험
송풍계통 기밀시험
열교환기 내압시험
활동수 빌브작동시험
안전장치 작동시험
환경시험
진동시험
충격시험
조합시험</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>출입문시험</td>
<td>출입문</td>
<td>외관검사
체수검사
동착시험
절연시험
전원변동시험
전자파적합성시험
운도시험
진동 및 충격시험
강도시험
내구성시험</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>충돌안전성시험</td>
<td>구조체</td>
<td>충돌시험</td>
<td></td>
</tr>
</tbody>
</table>
별표 16 완성차시험의 대상항목

<table>
<thead>
<tr>
<th>연번</th>
<th>시험항목</th>
<th>시험대상</th>
<th>세부 시험항목</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>중량측정시험</td>
<td>완성차량</td>
<td>축중측정 동일축 중중차이 동일차량 좌우윤중차이 차량중량 편성중량</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>차량한계측정</td>
<td>완성차량</td>
<td>차량한계측정</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>국선통과시험</td>
<td>완성차량</td>
<td>국선통과시험</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>접지시험</td>
<td>완성차량</td>
<td>접지상태시험 접지-접지레이لن간 접지임피던스 측정 보호본딩적로의 연속성 확인시험</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>절연저항측정</td>
<td>완성차량</td>
<td>절연저항시험</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>내전압시험</td>
<td>완성차량</td>
<td>내전압시험</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>누수시험</td>
<td>완성차량</td>
<td>차체누수시험</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>차체리프팅시험</td>
<td>완성차량</td>
<td>대차분리시험 차량운반시험</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>집전장치시험</td>
<td>집전장치</td>
<td>동작시험 기밀시험 접전헤드추중성 접은상태유지력 압상력시험 상승시간 최저등록을합 기밀시험 최저동작전압 완충작용이검사 집전장치편향시험 내전압시험</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>추진제어장치시험</td>
<td>추진제어장치</td>
<td>기능확인시험 기동확인시험</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>보조전원장치시험</td>
<td>보조전원장치</td>
<td>무무하 운전시의 출력전압시험 동작시험 충전기/충전기 기능확인시험</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>차상신호장치시험</td>
<td>차상신호장치</td>
<td>외관구조 및 전원검사 전원검사 기능검사</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부시험항목</td>
<td>비고</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>종합제어장치시험</td>
<td>종합제어장치</td>
<td>운전실 모니터시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>종합제어장치 전원동작시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>운전반 연계동작 시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>고전압장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연장급전장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동장치 및 압축기장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>출입문장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>실내조명 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>냉방장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>난방장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>환기장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>승객전용창문 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>신호장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방송/표시기장치 연계동작</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연계장치와의 통신 및 입출력확인시험</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>제동시험</td>
<td>완성차량</td>
<td>제동장치동작시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동장치제어시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>기초제동장치</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동블랜딩제어장치시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>활주검지 제어시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동블랜딩검지시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공기압축기 제어시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공기압축기 시험</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>냉난방· 환기장치 시험</td>
<td>냉난방환기장치</td>
<td>건인/제동 모드제어</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동장치시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>구원장치시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>속도계량체험시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>운전가동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>온도분포측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>환기장치시험</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>기능 및 동작 시험</td>
<td>완성차량</td>
<td>제어회로시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>시동, 정지 및 운전실교환 역행시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>갤시/운전실기기시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>비상상황설비시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>기관사경계장치시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>속도계량체험시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>고장기록확인시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>출입문동작시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>철도소프트웨어시험</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부시험항목</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>지상설비연계동작시험</td>
<td>완성차량</td>
<td>신호장치시험
열차무선장치지상연계시험</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>중련운전시험</td>
<td>완성차량</td>
<td>중련운전제어시험
편성연결시제어시험
고장기록확인시험
원격제어시험</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>화재감지장치시험</td>
<td>완성차량</td>
<td>열 감지 동작 확인 시험
연기 감지 동작 확인 시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td>장치시험</td>
<td>차량</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[별표 17] 시운전시험의 대상항목

<table>
<thead>
<tr>
<th>연번</th>
<th>시험규격</th>
<th>시험대상</th>
<th>세부시험항목</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>역행시험</td>
<td>편성차량</td>
<td>기동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>추가노치시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>재역행시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>점착성능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>구배기동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>가속도시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동거리 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>감속도 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(기계제동+전기제동)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공주간 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>점착성능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동거리 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>감속도 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(기계제동+전기제동)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공주간 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>점착성능시험</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>제동시험</td>
<td></td>
<td>비상제동거리 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>감속도 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공주간 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동거리 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>공주간 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동거리 측정시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전기제동장치의 현계</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전체제동시스템 3/4 제동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제동력 블랜딩 동작시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>활주방지장치시험(차륜활주보정)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>차상신호장치에 의한 비상제동 시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>고장열차 구원운전 시험</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>최고속도시험</td>
<td>편성차량</td>
<td>최고속도시험</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>집전시험</td>
<td>편성차량</td>
<td>동착시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>기밀시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>접진해드 추중성시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>접온상태유지시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>압상력시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>상방시간시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>접전장치론량시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전류접전시험(접촉력측정)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>유도장해시험</td>
<td>전자파간섭</td>
<td>복사상감상시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전도상감상시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>유도상감상시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>인체유해성시험</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>보호장치동작 확인시험</td>
<td>편성차량</td>
<td>과부하시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>순간정전시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전압변동시험</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>소음시험</td>
<td>편성차량</td>
<td>정차소음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>주행소음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>환경소음</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>진동시험</td>
<td>편성차량</td>
<td>상하좌우방향 진동시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>좌우방향 정상가속도 시험</td>
<td></td>
</tr>
<tr>
<td>연번</td>
<td>시험규격</td>
<td>시험대상</td>
<td>세부시험항목</td>
<td>비고</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9</td>
<td>승차감시험</td>
<td>편성차량</td>
<td>승차감시험</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>주행저항시험</td>
<td>편성차량</td>
<td>개활지 주행저항시험</td>
<td>터널 주행저항시험</td>
</tr>
<tr>
<td>11</td>
<td>공력특성시험</td>
<td>편성차량</td>
<td>공력특성계수시험</td>
<td>공기역학특성시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>협력변환시험</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>난난방화기시험</td>
<td>편성차량</td>
<td>운전가동시험</td>
<td>운도분포측정시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>원기장치시험</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>지상설비연계동작시험</td>
<td>정지상태시험</td>
<td>신호장치 정지상태 시험</td>
<td>출발전시험 및 일상시험</td>
</tr>
<tr>
<td></td>
<td></td>
<td>운행시험</td>
<td>신호장치 기능시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>열차운반장치 지상연계시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방송/표기장치 지상연계시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>열차운행정보전송장치 지상연계 시험</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>주요기기온도 및 상태시험</td>
<td>운도시험</td>
<td>외기 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>견인전동기 프레임 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>견인전동기 베어링 캡 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>견인전동기 냉각공기 베기구 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>추진제어 인버터 냉각유닛 표면 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>필터리액터 코일 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>축상 온도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>리액션플레이트 기타 필요한 부위</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>중량운전시험</td>
<td>상태시험</td>
<td>주행 전후의 고장기기 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>보조전원장치 동작상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방송장치 및 객실 안내 표시 장치 동작 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>각종 등구류 동작 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>열차운반장치 동작 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>승객정보장치 동작 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>출입문 동작 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>소비전력 및 회생전력 차량 속도</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>중량운전시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>연결/분리 및 축전지취소기능확인</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>방송표기장치 시험</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>